Application to Food Standards Australia and New Zealand for the Inclusion of Potatoes with Low Acrylamide Potential and Reduced Black Spot in Standard 1.5.2 Food Produced Using Gene Technology

Submitting Company: SPS International Inc. 999 W Main St #1300, Boise, ID 83702, United States of America

Submitted By:

Submitted On: 25th February 2016 SPS International Inc.

> OECD Unique identifiers: SPS-ØØE12-8

VOLUME 2 of 10

Supporting Studies:

- Study 15-29-SPS-MOL-01 E12 Structure Characterization
- Study 15-52-SPS-MOL-01 Evidence for the Absence of Backbone in Russet Burbank E12
- Study 15-60-SPS-COMP-01 Compositional Assessment of E12 Compared to Russet Burbank
- Study 15-64-SPS-MOL-01 Stability of DNA Insert in Russet Burbank E12
- Study 15-71-SPS-MOL RNA Expression of Down-Regulated Genes in Russet Burbank E12
- Study 15-75-SPS-MOL-01 Construction of pSIM1278
- Study 15-79-SPS-MOL E12 start to stop ORF
- Study 15-84-SPS-MOL- PPO Efficacy of E12

This document does not contain confidential information

STUDY TITLE

Molecular Characterization of the DNA Insert in Russet Burbank E12

AUTHORS

REPORT DATE

12/9/2015

PERFORMING LABORATORIES

SPS Regulatory Lab

STUDY NUMBER

15-29-SPS-MOL

Report 15-29-SPS-MOL-01 Page 2 of 17

CERTIFICATION PAGE

This report is an accurate and complete representation of the study activities.

12/9/15 Date

Senior Regulatory Scientist

12/9/15 Date

Senior Regulatory Science Manager

TABLE OF CONTENTS

ABSTRACT4
INTRODUCTION
STUDY OBJECTIVES
STUDY DATES
KEY STUDY PERSONNEL
MATERIALS AND METHODS
RESULTS9
Characterization of Insert Copy Number Following pSIM1278 Transformation9
Characterization of the Structure of the pSIM1278 Insert10
CONCLUSION
REFERENCES

ABSTRACT

Event E12 (E12) was created by transformation of the Russet Burbank potato variety with the plasmid, pSIM1278. The T-DNA region of pSIM1278 consists of two cassettes designed to down-regulate potato genes, *Asn1, Ppo5, R1*, and *PhL*, in tubers. Southern blot analysis was conducted to determine the insert structure and copy number in E12. A series of overlapping probes spanning the T-DNA were used to demonstrate that transformation with pSIM1278 led to introduction of a single insert within the Russet Burbank genome. Using probes that hybridize to genetic elements within the insert, Southern blot analysis revealed the insert consists of a single, nearly full-length T-DNA from pSIM1278.

INTRODUCTION

Event E12 was developed by transforming the Russet Burbank potato variety with the plasmid, pSIM1278 resulting in reduced acrylamide potential and reduced black spot in comparison to non-transformed Russet Burbank (WT). The T-DNA region of pSIM1278 consists of two cassettes designed to down-regulate up to four potato genes, *Asn1*, *Ppo5*, *R1*, and *PhL*, in tubers. The Asn1/Ppo5 cassette is comprised of fragments of the potato asparagine synthetase-1 (*Asn1*) and polyphenol oxidase-5 genes (*Ppo5*), arranged as inverted repeats separated by a non-coding potato spacer element (spacer 1). The PhL/R1 cassette is comprised of fragments from the potato phosphorylase-L (*PhL*) and water dikinase genes (*R1*). The fragments of *PhL* and *R1* are arranged as inverted repeats separated by a non-coding potato spacer element (spacer 2). Both cassettes are driven by two convergent native potato promoters; one for the ADP glucose pyrophosphorylase gene (*Agp*) and the other for the granule-bound starch synthase gene (*Gbss*). These promoters drive expression of the inverted repeats to generate double-stranded RNA to target *Asn1*, *Ppo5*, *R1*, and *PhL* for down-regulation in tubers.

The molecular characterization of E12 presented here, shows that transformation with pSIM1278 led to introduction of a single insert within the Russet Burbank genome. The E12 insert consists of a single nearly full-length T-DNA from pSIM1278 with small deletions in the Left Border (LB) and Right Border (RB) sequences.

Figure 1. Structure of the pSIM1278 T-DNA Insert in E12

The E12 insert consists of a single nearly full-length T-DNA from pSIM1278 with small deletions in the Left Border (LB) and Right Border (RB) sequences. The Asn1/Ppo5 down-regulation cassette contains an inverted repeat flanked by converging Agp and Gbss promoters. Similarly, the PhL/R1 down-regulation cassette contains an inverted repeat flanked by the same set of promoters. The left border (LB) and right border (RB) regions are not functional components of the insert.

STUDY OBJECTIVES

The objectives of this study were to:

- 1. Determine the number of pSIM1278 insertion sites.
- 2. Determine the molecular structure of the pSIM1278 insert

STUDY DATES

01/2008 - 07/2015

KEY STUDY PERSONNEL

MATERIALS AND METHODS

Plant Material

Russet Burbank and E12 plants (G0) were grown in Sunshine mix-1 (www.sungro.com) in two-gallon pots in a greenhouse controlled for temperature (18 °C minimum/27 °C maximum) and light (16-h photoperiod with an intensity of about 1500 μ mol/m²/s). After one to two months of growth, leaf tissue was collected and used for genomic DNA isolation.

DNA Isolation

Isolation of DNA was performed by one of two methods. Control and event DNA were extracted with the same method for any given comparison. For the first method, a 1.0 g sample of young potato leaves was ground into a fine powder using a mortar and pestle under liquid nitrogen. The ground tissue was transferred to a pre-cooled 15 mL conical tube with a pre-cooled spatula and stored at -80 °C. Powdered tissue was thoroughly mixed with 10 mL extraction buffer (0.35 M Sorbitol, 0.1 M Tris-HCl, pH 8.0, 0.05 M EDTA) and the suspension was centrifuged at 3,000 rpm for 15 min at room temperature. The pellet was resuspended in 2 mL extraction buffer containing 200 μ g RNase A. After incubating the suspended DNA at 65 °C for 20 min with 2 mL nuclear lysis buffer (0.2 M Tris-HCl pH 7.5, 0.005 M EDTA pH 8.0, 20 mg/mL CTAB, 800 μ L 5% Sarcosyl) it was mixed with an equal volume of chloroform: isoamyl alcohol (24:1), vortexed for 1 min, and centrifuged at 3,000 rpm for 5 min at room temperature. The DNA was precipitated with an equal volume of isopropyl alcohol, washed with 70% ethanol, air dried, and dissolved in 400-700 μ L 1X Tris/EDTA buffer (TE). DNA concentration was measured using Qubit Fluorometric Quantitation (Life Technologies). DNA quality was confirmed by running the DNA on a 0.8% agarose gel in 1X Tris/Acetate/EDTA (TAE) for 30-40 min at 80 volts.

For the second method, 0.7 g of young leaves was ground and mixed with 7 mL CTAB buffer (2% CTAB, 1.4 M NaCl, 0.1 M Tris-HCl pH 8.0, 20 mM EDTA pH 8.0, 100 µg/mL RNase) and incubated at 55°- 65 °C for 30 min followed by centrifugation at 3,000 rpm for 15 min. DNA was extracted twice with equal volumes of chloroform: isoamyl alcohol (24:1) by shaking for 10 min and centrifuged at 3,000 rpm for 5 min at room temperature. The DNA was precipitated with equal volumes of ethanol and rinsed with 70% ethanol. The resulting pellet was air dried and resuspended in TE buffer. DNA concentration was measured using Qubit Fluorometric Quantitation (Life Technologies). DNA quality was confirmed by running the DNA on a 0.8% agarose gel in 1X Tris/Acetate/EDTA (TAE) for 30-40 min at 80 volts.

DNA Restriction Digestion

4 μ g of plant DNA was digested overnight in 400 μ L final volume with at least 5 μ L (10 units/ μ L) restriction enzyme (Invitrogen) at 37 °C. Digested DNA was concentrated by ethanol precipitation (40 μ L of 3M NaOAc pH 5.3 and 1 mL ethanol) at -80 °C for 10 min followed by a wash with 70% ethanol. The DNA pellet was dissolved in 20 μ L 1X TE followed by addition of 2 μ L DNA gel loading buffer, which consisted of 40% sucrose and 0.35% Orange G (Sigma) in water.

Membrane Preparation and Transfer

Digested plant DNA was loaded on a 0.7% agarose gel containing 1X Tris/Acetate/EDTA (TAE) buffer with 3-5 μ L ethidium bromide (10 mg/mL) and run at 35 volts for 18 h. The gel was photographed using a gel documentation system from Alpha Innotech (Santa Clara, California), and depurinated by submerging it in 0.25 N HCl for 2 x 10 min. The gel was subsequently placed in denaturation solution (0.5 M NaOH /1.5 M NaCl) for 2 x 15 min then neutralization solution (1.5 M NaCl and 0.5 M Tris-HCl pH7.5) for 2 x 15 min on a shaker at room temperature. The gel was then equilibrated with 10X SSC for 10 min. The transfer of DNA to the nylon membrane was carried out using 10X SSC according to a standard capillary transfer method.

DIG-Labeled Probe Preparation

The labeling of the PCR-derived probe was achieved using Hotmaster *Taq* enzyme and buffer (Fisher BioReagents) according to Roche's DIG labeling instructions. A standard 50 μ L reaction consisted of 5 μ L of 10x Hotmaster *Taq* Buffer, 2-5 μ L of 10 μ M forward primer, 2-5 μ L of 10 μ M reverse primer, 5 μ L DIG-labeled dNTP (Roche), 10 ng plasmid template, and 0.75 μ L Hotmaster *Taq* polymerase. The PCR amplification conditions were dependent on each DIG-labeled probe. PCR with regular dNTP instead of DIG labeled dNTP was used as control. Quality of the DIG-labeled probe was assessed by running a small amount of the probe on 1% agarose DNA gel (due to the presence of the DIG moieties in the DNA, probes migrate slower than the control PCR product). The probe was denatured by incubating the probe at 95 °C for 5 min and cooled on ice for 2 min before use.

Probe Hybridization

The cross-linked nylon membrane was prehybridized in 40 mL pre-warmed DIG Easy Hybridization solution (Roche) at 42 °C for 1-4 h in a bottle using a standard hybridization oven (Amerex Instruments Inc.) at 20-25 rpm. Hybridization was carried out by replacing the prehybridization buffer with fresh preheated prehybridization solution, containing 25-50 μ L denatured DIG labeled probe. The membrane was incubated at 42 °C, 20-25 rpm for 16 h. The hybridization solution was stored at -20 °C and reused up to 3 times. The reused hybridization solution was heated at 68 °C for 10 min before use.

Detection

The hybridization solution was removed and replaced with 100 mL washing solution I (2X SSC/0.1% SDS). The membrane was washed twice in washing solution I for 10 min at room temperature. This low stringency buffer was poured off and preheated high stringency washing solution II (0.5X SSC/0.1% SDS,

60 °C) was added immediately. The membrane was washed twice in washing solution II at 68 °C for 20 min each at 25-30 rpm, followed by a brief rinse with 2X SSC to remove SDS. The membrane was rinsed with 150 mL 1X DIG Washing Solution (Roche) in a tray for 2 min and incubated in 1X Blocking solution (Roche) for 0.5-3 h on a low-speed shaker. The blocked membrane was incubated with DIG antibody solution (1:10,000 dilution of Anti-DIG-alkaline phosphate conjugate with 1X Blocking solution) for 30 min on a shaker at room temperature. The membrane was washed twice (15 min each) with 1X DIG Washing Solution (Roche) and equilibrated with 1X detection buffer. The detection reaction was carried out with 2 mL CDP-Star solution (1:100 diluted stock of CDP-Star with 1X detection buffer) for 5 min. The membrane was wrapped in a plastic film and either exposed to film or developed on an Amersham Imager 600 (GE Healthcare Life Sciences). Films were developed with a Konica SRX-101A Z-ray film developer.

Southern Blot Presentation Notes

Southern blots were presented along with a table that indicates the approximate size of the bands associated with the T-DNA insert and any digested pSIM1278 plasmid bands used as controls. The bands associated with inserts are distinguished as either junction bands (JB), plasmid bands (PB), or internal bands (IB) depending on their location. Plasmid bands refer to digestion products of predictable sizes and are associated with digested pSIM1278 while internal bands refer to digestion products of predictable sizes that are contained entirely within the boundaries of the T-DNA insert. Junction bands are those bands that extend from the T-DNA insert into the adjacent, native potato DNA. The exact size of these bands can only be predicted when restriction sites exist within the identified flanking sequences. However, the minimum size of these bands can be calculated for a simple T-DNA insert based upon the distance from a given restriction site to the end of the identified flanking sequences (separate study). Junction bands are useful for confirming the number of integration sites in the genome as each integration event will possess two junction bands. Since the T-DNA sequence is largely derived from potatoes, Southern blot probes targeting the insert will also detect a few to many endogenous bands, depending upon the frequency of that sequence in the genome. These bands are not labeled in the Southern blots for simplicity, but consist of all bands common in size and intensity between control and event samples.

Occasionally, bands greater than 3 kb migrate faster than expected due to the presence of residual polysaccharides in the isolated DNA. The size of these bands were verified where possible, by including control samples spiked with pSIM1278 plasmid DNA that produces the same sized bands for comparison.

RESULTS

Characterization of Insert Copy Number Following pSIM1278 Transformation

The pSIM1278 T-DNA consists of an Asn1/Ppo5 down-regulation cassette flanked by converging *Agp* and *Gbss* promoters and a second PhL/R1 down-regulation cassette flanked by the same set of converging promoters (Figure 2). The number of inserts in E12 was evaluated by Southern blot analysis of genomic DNA digested with the Ndel restriction enzyme and hybridized using a series of seven probes that span the length of the T-DNA (Figure 2). Ndel was chosen as it cuts frequently within the potato genome, but does not cut within the boundaries of the T-DNA itself. Thus, a single contiguous band is expected for each insert. Moreover, an intact insert will have the same size when using any of the probes. The presence of additional bands would indicate the presence of a second insert. Finally, since Ndel cuts frequently in the potato genome, it is unlikely that two inserts would have the same size.

Figure 2. pSIM1278 T-DNA Spanning Probes used to Characterize Insert Number

A schematic of the full structure of the pSIM1278 T-DNA is shown along with the binding sites for each of the seven probes (1278.1 – 1278.7). The probes were designed to overlap and cover the T-DNA sequence. Due to redundancy of sequence in the insert, some probes hybridized to more than one location within the T-DNA. Probes 1278.4 and 1278.6 are only shown once in the figure, but overlap in their coverage of the insert.

Following digestion with Ndel, DNA was separated on agarose gels using extended electrophoresis to ensure adequate separation and resolution of high-molecular weight bands. Southern blots were hybridized with each of the probes described in Figure 2. In each case, a single, high molecular weight band (about 12 kb) was detected using each of the seven probes (Figure 3). The band unique to E12 is indicated in each gel with a black arrow. All other bands exist in both the WT and E12 samples indicating they are endogenous bands not related to the transformation. Since the insert consists of a single copy of the T-DNA in a tetraploid potato (shown below), the detection of this band establishes that the sensitivity of the assay is sufficient to detect a single copy in the genome. Collectively, these data show the pSIM1278 insert was integrated at a single locus within the Russet Burbank genome.

Figure 3. Southern Blots Showing the Presence of a Single Insert in E12

Southern blots of Ndel-digested genomic DNA isolated from Russet Burbank and E12 plants. Both samples were digested with Ndel, which does not cut within the T-DNA insert, but does cut frequently in the potato genome. The single T-DNA insert is indicated in each gel (Probes 1278.1 – 1278.7) by a black arrow. The molecular weight markers, DIGII and DIGVII, were included in each gel and are labeled in kilobases (kb) at the left of the first gel.

Characterization of the Structure of the pSIM1278 Insert

A series of Southern blots were performed to elucidate the structure of the single insert. Southern blots were performed using a different set of probes. The probes described in Figure 2 would result in very complex banding patterns due to the number of hybridization sites in the genome and their juxtaposition to the restriction sites. Instead, a combination of probes and restriction digests were chosen that would result in an informative mixture of digestion products with predicable sizes based upon the structure of the T-DNA in pSIM1278 (Figure 4). Probes hybridizing to the Agp, Asn1, pGbss, and R1 elements were used following digestion with: (1) EcoRV, (2) HindIII, or (3) a double digest with EcoRI and Scal.

The location of the binding site for each probe and a schematic of the restriction patterns of the final structure (grey box) are provided in Figure 4 for ease of comparison with the Southern blot results. The expected bands, their sizes, and a colored marker indicating probes expected to hybridize with each band are provided. Genomic DNA of non-transformed Russet Burbank was used as a wild-type comparison. A second wild-type sample was spiked with pSIM1278 plasmid prior to digestion to serve as a copy number control and size marker when appropriate. The plasmid was spiked at a target concentration of roughly one copy per genome equivalent. As genomic DNA isolated from potato plants does not always migrate true to size when compared to a molecular weight marker, presumably due to the presence of polysaccharides, the plasmid control provides a valuable size comparison. All Southern blots (Figures 5 - 8) are presented adjacent to a table indicating the observed bands and their molecular

weights to simplify comparison with Figure 4. The table denotes all bands, internal bands (IB) and junction bands (JB), in red; whereas bands (PB) associated with the pSIM1278 plasmid DNA are indicated associated in black in the adjacent tables.

Figure 4. Structure of the pSIM1278 T-DNA Insert in E12 with Digestion Patterns and Probe Binding Sites

A schematic of the full structure of the pSIM1278 T-DNA insert is shown along with the binding sites for each of the four probes (AGP, ASN, GBS1, and R1). The probes all bind to two different locations within the insert. The restriction products that are recognized by the probes are shown within the grey box where the expected sizes are indicated. The actual size of junction bands is shown in parenthesis (sizes of junction bands are estimates, except the 4.5 kb EcoRV band).

As shown by the red boxes in Figure 4, the digests are expected to produce six bands that are completely contained within the boundaries of the T-DNA (internal bands, IB). These same bands are expected from digestion of the pSIM1278 plasmid DNA and thus provide an ideal molecular weight comparison. Each digest resulted in two internal bands; 0.7 kb and 2.3 kb for EcoRV, 4.2 kb and 1.3 kb for HindIII, and 3.8 and 0.8 kb for EcoRI/Scal. Southern blots hybridized separately with the AGP, ASN, GBS1 or R1 probes confirmed the presence and size of each of the bands (Figures 5 - 8). In the EcoRV digests, the 0.7 kb band was uniquely detected by the ASN probe (Figure 6), whereas the 2.3 kb fragment was detected by the ASN, GBS1, and AGP probes (Figures 5, 6, and 7), as anticipated. In the HindIII digests, the 4.2 kb fragment was detected by the ASN, GBS1, and AGP probes (Figures 5, 6, and 7), whereas the 1.3 kb fragment was detected by the R1 probe (Figure 8). As expected, the 4.2 kb band had a higher intensity when hybridized with the ASN probe (Figure 6) due to multiple binding sites associated with the inverted repeat (Figure 4). In the EcoRI/Scal digests, the 3.8 kb fragment was detected in the GBS1, AGP, and R1 blots (Figures 5, 7, and 8), whereas the 0.8 kb fragment was only detected by the R1 probe (Figure 8). All of the internal bands migrated equivalently with similar intensities to the plasmid DNA controls spiked into the wild-type samples. These data indicate the presence of a single intact copy of the internal region of the T-DNA insert in E12.

The remaining structure of the insert was assessed through analysis of the junction bands associated with these same restriction digests. There were six junction bands (blue boxes) associated with the digests as shown in Figure 4. The open-ended blue boxes denote junction bands where only one of the

two restriction site locations is known and thus the exact size cannot be predicted. Each of these junction bands is labeled with the expected minimum size and the observed size (shown in parentheses) from the Southern blots (Figures 5 – 8). Characterization of the junction sites and flanking sequences identified the presence of an EcoRV site in the right flanking region as shown in Figure 4 (separate study). Identification of this site predicted the EcoRV right junction band should be 4.5 kb and was thus represented by a closed box in Figure 4.

As with the internal bands, each restriction digest resulted in two junction bands: >2.1 kb and 4.5 kb for EcoRV, >3.4 kb and >3.2 kb for HindIII, and >4.7 kb and >2.9 kb for EcoRI/Scal. As summarized in Figure 4 and shown in the Southern blots in Figures 5-8, all of the expected junction bands were observed with the expected sizes. As expected for the structure presented in Figure 4, the AGP probe detected a junction fragment with each of the digests: 2.2 kb EcoRV, 16 kb HindIII, and 5.4 kb EcoRI/Scal bands (Figure 5). The 5.4 kb band was also detected by the ASN probe with higher intensity as predicted by the multiple binding sites (Figure 6). Similarly, the GBS1 and R1 probes detected the three expected junction fragments associated with the right side of the structure: 4.5 kb EcoRV, 5.5 kb HindIII, and 3.0 kb EcoRI/Scal bands (Figures 7 and 8). The EcoRV junction band had higher intensity confirming the presence of an entire inverted repeat on the right side of the insert (Figure 8).

In summary, the overlapping restriction fragments cover the entire insert and therefore confirms the model that the E12 insert consists of a single nearly full-length T-DNA from pSIM1278. The left and right borders were shown to consist of small deletions of non-functional DNA during the characterization of the flanking regions (Layne et al. 2015).

Figure 5. Southern blots with AGP Probe

Genomic DNA of Burbank control (WT) and event E12 were digested with EcoRV, HindIII, and EcoRI/Scal and hybridized with the AGP probe. The estimated sizes of bands are summarized in the table and classified into three groups based on the structure of the DNA insert: T-DNA insert fragments for both IBs and JBs are in red. Plasmid bands (PB) associated with digested pSIM1278 (p1278) are in black. Size of the DIGII and DIGVII molecular weight markers are indicated adjacent to the blot image. All molecular weights are presented in kilobases (kb).

Figure 6. Southern blots with ASN Probe

Genomic DNA of Burbank control (WT) and event E12 were digested with EcoRV, HindIII, and EcoRI/Scal and hybridized with the ASN probe. The estimated sizes of bands are summarized in the table and classified into three groups based on the structure of the DNA insert: T-DNA insert fragments for both IBs and JBs are in red. Plasmid bands (PB) associated with digested pSIM1278 (p1278) are in black. Size of the DIGII and DIGVII molecular weight markers are indicated adjacent to the blot image. All molecular weights are presented in kilobases (kb).

Probe GBS1 FcoBV HindIII FcoBI/Scal	FcoPV/	HindIII	
DIGII DIGVII WT WT E12 WT WT E12	ECORV	піпапі	ECORI/SCAI
Kb p1278 p1278 p1278			
23.1			
9.4		PB 10.6	
		JB 5.5	
4.9			
4.3	JB 4.5	PB 4.2 IB 4.2	
3.6	PB 3.8		IB 3.8
2.8			JB 3.0
2.3	PB 2.3		
2.0 1.95 1.88	10 2.5		PB 2.1
1.52 1.48			
1.16			
1.0			
0.7 —			

Figure 7. Southern blots with GBS1 Probe

Genomic DNA of Burbank control (WT) and event E12 were digested with EcoRV, HindIII, and EcoRI/Scal and hybridized with the GBS1 probe. The estimated sizes of bands are summarized in the table and classified into three groups based on the structure of the DNA insert: T-DNA insert fragments for both IBs and JBs are in red. Plasmid bands (PB) associated with digested pSIM1278 (p1278) are in black. Size of the DIGII and DIGVII molecular weight markers are indicated adjacent to the blot image. All molecular weights are presented in kilobases (kb).

Probe R1			
EcoRV HindIII EcoRI/Scal	EcoRV	HindIII	EcoRI/Scal
Kb p1278 p1278 p1278			
23.1			
9.4 —			
4.9		10 2.2	
4.3	JB 4.5		
3.6 _ • • • • • • • • • • • • • • • • • •	PB 3.8	PB 3.5	PB 3.8 IB 3.8
2.8 _			JB 3.0
2.3			
2.0 1.95 1.88			PB 2.1
1.52			
1.48 1.16		PB 1.3 IB 1.3	
1.0			
0.72 —			PB 0.8
			IB U.8

Figure 8. Southern blots with R1 Probe

Genomic DNA of Burbank control (WT) and event E12 were digested with EcoRV, HindIII, and EcoRI/Scal and hybridized with the R1 probe. The estimated sizes of bands are summarized in the table and classified into three groups based on the structure of the DNA insert: T-DNA insert fragments for both IBs and JBs are in red. Plasmid bands (PB) associated with digested pSIM1278 (p1278) are in black. Size of the DIGII and DIGVII molecular weight markers are indicated adjacent to the blot image. All molecular weights are presented in kilobases (kb).

CONCLUSION

The molecular characterization of E12 presented here, demonstrates that transformation with pSIM1278 led to introduction of a single insert within the Russet Burbank genome. The E12 insert consists of a single, nearly full-length T-DNA from pSIM1278 in the Left Border (LB) and Right Border (RB) regions that are not necessary for any of the desired traits and are consequences of Agrobacterium-mediated transformation.

REFERENCES

Study Report 15-57-SPS-MOL.

(2015). Characterization of the Insertion Site in Russet Burbank E12.

STUDY TITLE

Evidence for the Absence of Plasmid Backbone DNA in Russet Burbank E12

AUTHORS

REPORT DATE 12/10/2015

PERFORMING LABORATORIES

SPS Regulatory Lab

STUDY NUMBERS 15-52-SPS-MOL

CERTIFICATION PAGE

This report is an accurate and complete representation of the study activities.

_____12_19/15^{__}____ Date

Associate Regulatory Scientist

12/9/15 Date

Senior Regulatory Science Manager

TABLE OF CONTENTS

ABSTRACT	4
INTRODUCTION	5
	5
	J
	5
MATERIALS AND METHODS	6
RESULTS	8
CONCLUSION	.12

ABSTRACT

Event E12 (E12) was generated by transformation of Russet Burbank with pSIM1278. *Agrobacterium*mediated transformation can lead to the integration of plasmid backbone sequences into a host genome along with the desired T-DNA. Following *Agrobacterium*-mediated transformation, E12 was evaluated for the presence of backbone DNA by Southern Blot analysis. No hybridization signal was detected in Southern blots using a series of eight probes that span the backbone of the plasmid, pSIM1278. Thus, there is no evidence of backbone DNA in the E12 genome.

INTRODUCTION

E12 was generated by the transformation of Russet Burbank with pSIM1278. *Agrobacterium*-mediated transformation can lead to the integration of plasmid backbone sequences into a host genome along with the desired T-DNA. The plasmid backbone is important for replication and selection of the plasmid in bacteria but is not intended to transfer into the genome during transformation. The absence of backbone in E12 was assessed by Southern blot analysis using a series of eight probes that span the backbone of the plasmid, pSIM1278. There was no evidence of backbone DNA in the E12 genome.

STUDY OBJECTIVES

The objective of this study is to verify the absence of backbone from the transformation plasmid, pSIM1278, in the E12 genome.

STUDY DATES

01/2008 - 07/2015

KEY STUDY PERSONNEL

MATERIALS AND METHODS

Plant Material

Russet Burbank and E12 (G0) plants were grown in Sunshine mix-1 (www.sungro.com) in two-gallon pots in a greenhouse controlled for temperature (18 °C minimum/27 °C maximum) and light (16 h photoperiod with an intensity of about 1,500 μ mol/m2/s). After one to two months of growth, leaf tissue was collected and used for genomic DNA isolation.

DNA Isolation

A 1.0 g sample of young potato leaves was ground into a fine powder using a mortar and pestle under liquid nitrogen. The ground tissue was transferred to a pre-cooled 15 mL conical tube with a pre-cooled spatula and stored at -80 °C. Powdered tissue was thoroughly mixed with 10 mL extraction buffer (0.35 M sorbitol, 0.1 M Tris-HCl, pH 8.0, 0.05 M EDTA) and the suspension was centrifuged at 3,000 rpm for 15 min at room temperature. The pellet was resuspended in 2 mL extraction buffer containing 200 μ g RNase A. After incubating the suspended DNA at 65 °C for 20 min with 2 mL nuclear lysis buffer (0.2 M Tris-HCl pH 7.5, 0.005 M EDTA pH 8.0, 20 mg/mL CTAB, 800 μ L 5 % sarcosyl) it was mixed with an equal volume of chloroform: isoamyl alcohol (24:1), vortexed for 1 min, and centrifuged at 3,000 rpm for 5 min at room temperature. The DNA was precipitated with an equal volume of isopropyl alcohol, washed with 70 % ethanol, air dried, and dissolved in 400-700 μ L 1X Tris/EDTA buffer (TE). DNA concentration was measured using Qubit Fluorometric Quantitation (Life Technologies). DNA quality was confirmed by running the DNA on a 0.8 % agarose gel in 1X Tris/Acetate/EDTA (TAE) for 30-40 min at 80 volts.

DNA Restriction Digestion

Plasmid pSIM1278 containing a full backbone, served as a positive control. A 4.0 μ g sample of plant DNA was digested overnight in 400 μ L final volume with at least 5 μ L (10 units/ μ L) restriction enzyme (Invitrogen) at 37 °C. Digested DNA was concentrated by ethanol precipitation (40 μ L of 3M NaOAc, pH 5.3 and 1 mL ethanol) at -80 °C for 10 min followed by a wash with 70 % ethanol. The DNA pellet was dissolved in 20 μ L 1X TE followed by addition of 2 μ L DNA gel loading buffer, which consists of 40 % sucrose and 0.35 % Orange G (Sigma) in water.

Gel Preparation

Digested DNA was separated by electrophoresis on a large 0.7 % agarose gel containing 0.5X Tris-borate-EDTA (TBE) buffer for 18 h using 35 volts. The gel was stained with ethidium bromide (10 mg/mL), photographed using a gel documentation system from Alpha Innotech (Santa Clara, California), and depurinated by submersion in 0.25N HCl for 20 min. After subsequent denaturation in 0.5 M NaOH / 1.5 M NaCl for 2 x 15 min and neutralization in 1.5 M NaCl / 0.5 M Tris-HCl (pH 7.5), for 2 x 15 min on a shaker at room temperature, the gel was equilibrated with 10X SSC for 10 min. The transfer of DNA to the nylon membrane was carried out with 10X SSC using capillary transfer.

DIG-Labeled Probe Preparation

The labeling of PCR-derived probes were achieved using Hotmaster Taq enzyme and buffer (Fisher BioReagents) according to Roche's DIG labeling protocol. A standard 50 μ L reaction consisted of 5 μ L of 10X Hotmaster Taq Buffer, 2-5 μ L of 10 μ M forward primer, 2-5 μ L of 10 μ M reverse primer, 5 μ L of DIG labeled dNTPs (Roche), 10 ng plasmid template, 0.75 μ L Hotmaster Taq polymerase, and water. The PCR amplification conditions were optimized for each DIG-labeled probe. PCR with dNTPs instead of DIG labeled dNTPs were used as a control. Quality of the DIG labeled probe was assessed by analyzing a fraction of the product on a 1 % agarose gel alongside control (unlabeled) PCR product. The probe was denatured before use by incubating the probe at 95 °C for 5 min, and then quenched on ice for 2 min.

Hybridization

The nylon membrane carrying transferred DNA was prehybridized in 40 mL pre-warmed DIG Easy Hybridization solution (Roche) at 42 °C for 1-4 h in a hybridization oven (Amerex Instruments Inc.) rotating at 20-25 rpm. Nylon filters cross-linked with DNA digested with EcoRI were hybridized independently with six different probes and DNA digested with EcoRI/Scal with two different probes, spanning the plasmid backbone (see Figure 1 for the linear arrangements of the probes described). Hybridization was carried out by replacing the prehybridization buffer with a fresh amount of the same preheated solution containing 25-50 μ L denatured DIG labeled probe, and continuing the incubation with rotation (20-25 rpm) at 42 °C for about 16 h. The probe-containing hybridization solution was stored (-20 °C) and reused up to three times. The reused hybridization solution was heated at 68 °C for 10 minutes before use.

Detection

The hybridization solution was removed and replaced by 100 mL washing solution I (2X SSC/0.1 % SDS). The membrane was washed twice in washing solution I for 10 min at room temperature. This low stringency buffer was poured off and preheated high stringency washing solution II (0.5X SSC/0.1 % SDS, 60 °C) was added immediately. The membrane was washed twice in washing solution II at 60-63 °C for 20 min each at 25-30 rpm. This was followed by a rinse with 2X SSC to remove SDS. The membrane was rinsed with 150 mL of 1X DIG Washing Solution (Roche) in a tray for 2 min and incubated in 1X Blocking solution (Roche) for 0.5-3 hours on a low-speed shaker. The blocked membrane was incubated with DIG antibody solution (1:10,000 dilution of Anti-DIG-alkaline phosphate conjugate with 1X Blocking solution) for 30 min on a shaker. The membrane was washed twice (15 min each) with 1X DIG Washing Solution (Roche) and equilibrated with 1X detection buffer. The detection reaction was carried out with 2 mL CDP-Star solution (1:100 diluted stock of CDP-Star with 1X detection buffer) for 5 min. The membrane was wrapped in plastic film. Depending on the experiment multiple exposures were taken from 30 sec to 30 min. Images were developed with an Amersham Imager 600 (GE). Following detection, membranes were washed twice (15 min each) at 37 °C with stripping buffer (0.2M NaOH and 0.1 % SDS) and rinsed with 2x SSC for 5 min. Membranes were checked with Amersham Imager 600 to confirm the absence of signal prior to incubation with additional backbone probes. Each membrane was stripped once and probed twice.

RESULTS

To detect any backbone DNA that may be present in E12, genomic DNA was isolated from Russet Burbank (WT) and E12 plants and analyzed by Southern blotting following digestion with EcoRI or EcoRI/Scal. The pSIM1278 plasmid served as a positive control (1278) and was spiked into WT genomic DNA at a targeted concentration of one copy / genome equivalent (23.4 pg) prior to digestion. Detection of backbone at this concentration showed the probes are sensitive enough to detect a single copy of backbone DNA in the genome. A set of eight probes were used that span the backbone sequence. A linear representation of the plasmid backbone, including probe binding sites is shown in Figure 1A along with the expected fragment sizes.

As indicated in Figure 1A, digestion of pSIM1278 with EcoRI produces three bands (12.5 kb, 1.57 kb, and 5.6 kb) detectable by the probe set. Samples were digested with EcoRI for the Southern blots hybridized with probes BB1-BB6. A double digest (EcoRI/ScaI) was used for Southern blots hybridized with probes BB7 and BB8 due to cross reactivity of probe BB8 with the pSIM1278 T-DNA. The sequence of the spacer 2 element within the PhL/R1 inverted repeat is derived from the Ubi7 promoter and is therefore detected by the probe BB8 in the pSIM1278 plasmid control and the pSIM1278 insert in E12 (Figure 1B). The EcoRI/ScaI digest of the plasmid control and E12 produces a 0.8 kb band. The structure of the pSIM1278 insert in E12 is shown in Figure 1B along with the expected ScaI digestion product.

A pSIM1278 Backbone

Figure 1. Linear Structure of the pSIM1278 Backbone and Insert in E12

(A) Linear map of the backbone for pSIM1278. The eight probes used to detect the backbone are indicated below (BB1-8) with the size of the probe indicated in base pairs (bp). The EcoRI sites and expected band sizes for the pSIM1278 plasmid control are indicated as colored boxes. (B) Structure of the pSIM1278 insert in E12 is shown. The BB8 probe detects the spacer 2 region of the insert and produces a 0.8 kb band when digested by Scal.

The concentration of DNA samples were normalized following digestion, and equal loading was verified by staining the agarose gels used in Southern analysis with ethidium bromide (Figure 2).

No hybridization signal was detected in Southern blots hybridized with probes BB1 - BB4 corresponding to backbone DNA in the E12 genome (Figure 3). The expected 12.5 kb fragment was readily detected for the positive control samples in each of these blots. Endogenous bands were detected in all samples of the blot hybridized with probe BB3, which were not related to the transformation.

There were no backbone fragments detected in the genome of E12 when hybridized with probes BB5-BB8 (Figure 4). The expected 1.57 kb plasmid fragment described in Figure 1A was detected in the positive control samples for blots hybridized with probes BB5, BB7, and BB8. Similarly, the 5.6 kb plasmid fragment (Figure 1A) was detected specifically in positive control samples by probes BB6 and BB8 (Figure 4). Lastly, the expected 0.8 kb band was detected in the E12 and pSIM1278 control sample in the blot probed with BB8. This band corresponds to the spacer 2 element of the pSIM1278 insert flanked by Scal restriction sites as shown in Figure 1B. Endogenous bands not related to the transformations were observed in all samples in the blots hybridized with probes BB6 – BB8.

Figure 2. Evidence of Equal Loading of Genomic DNA during Southern Blotting

Four separate agarose gels were loaded with an equivalent amount (4 μ g) of EcoRI or EcoRI/Scal digested DNA of Russet Burbank control (WT), E12, and WT spiked with plasmid pSIM1278 (1278) as evidenced by similar signal intensities in each lane after staining with ethidium bromide to detect DNA. Lanes 1 and 2 include molecular weight markers, DIGII and DIGVII, which were loaded at concentrations too low to be detected by the ethidium stains.

Figure 3. Southern Blots Probed with BB1-4 Show No Evidence of Backbone DNA in E12

Southern blots of genomic DNA isolated from Russet Burbank (WT), E12, and WT spiked with pSIM1278 (1278). Molecular weight markers, DIGII and DIGVII, are labeled in kilobases (kb). Red arrows indicate expected 12.5 kb bands unique to the plasmid control (1278).

Figure 4. No Evidence of Backbone DNA Corresponding to Probes BB5-BB8 in E12

Southern blots of genomic DNA isolated from Russet Burbank (WT), E12, and WT spiked with pSIM1278 (1278). Molecular weight markers, DIGII and DIGVII, are labeled in kilobases (kb). Red arrows indicate expected bands (1.57 kb and 5.6 kb) unique to the plasmid control (1278). Blue arrow indicates 0.8 kb band associated with the spacer 2 element of the pSIM1278 insert in E12.

CONCLUSION

In this study, Southern blotting was used to probe for the presence of backbone DNA in the E12 genome. No hybridization signal was detected corresponding to backbone DNA in the E12 genome in Southern blots hybridized with probes that spanned the length of the backbone. Thus, this report confirms the absence of backbone DNA in E12.

STUDY TITLE

Compositional Assessment of E12 Compared to Russet Burbank

AUTHOR(S)

REPORT DATE

October 14, 2015

PERFORMING LABORATORIES

Simplot Plant Sciences, Boise, ID Covance Laboratories, Inc., Madison, WI

STUDY NUMBER

15-60-SPS-COMP-01

Report 15-60-SPS-COMP-01 Page 2 of 77

QUALITY CONTROL STATEMENT

This report was reviewed to assure that it accurately reflects the raw data of this study. The raw data were audited for compliance with the protocol, study notebook, and Standard Operating Procedures where applicable.

10-14-15 Date

Quality Control Reviewer

Report 15-60-SPS-COMP-01 Page 3 of 77

CERTIFICATION PAGE

This report is an accurate and complete representation of the study activities.

Study Coordinator and Author

10-14-15 Date Date

Author

TABLE OF CONTENTS

TABLE OF CONTENTS
LIST OF TABLES
ABSTRACT9
INTRODUCTION
STUDY OBJECTIVES
STUDY DATES
PERFORMING LABORATORIES
METHODS
Selection of Control Varieties10
Field Trials
MATERIALS14
Sample Collection14
Testing Facility14
Sample preparation14
RESULTS
NUTRITIONAL ANALYSIS RESULTS FOR RUSSET BURBANK AND E12
Total Amino Acids23
Glycoalkaloids
EFFICACY ANALYSIS RESULTS FOR RUSSET BURBANK AND E1225
Free Amino Acids25
Reducing Sugars
Acrylamide27
CONCLUSION
APPENDIX A
REFERENCES

LIST OF TABLES

Table 1. Field Trial Locations for E12 and Russet Burbank	. 12
Table 2. Field Trial List for Reference Varieties	.13
Table 3. Laboratory Facilities Used for Compositional Analysis	. 14
Table 4. Tuber Composition Analytes Measured	.21
Table 5. Proximates, Vitamins, and Minerals in E12 and Control Russet Burbank	. 22
Table 6. Total Amino Acids in E12 and Control Russet Burbank	.24
Table 7. Glycoalkaloids in E12 and Control Russet Burbank	. 25
Table 8. Free Amino Acids in Tubers of E12 and Control Russet Burbank ¹	.26
Table 9. Russet Burbank and E12 Sugars in Tubers at Harvest and After Storage	. 27
Table 10. Acrylamide in Fries from Russet Burbank and E12 at Harvest and After Storage	. 28
Table A-1. Proximates, Vitamins, and Minerals in E12 and Control Russet Burbank at Adams County, Washington in 2010	.31
Table A-2. Total Amino Acids in E12 and Control Russet Burbank at Adams County, Washington in 201	0
	. 32
Table A-3. Glycoalkaloids in E12 and Control Russet Burbank in Adams County, Washington in 2010	.33
Table A-4. Free Amino Acids in Tubers of E12 and Control Russet Burbank in Adams County, Washington in 2010	on . 33
Table A-5. Russet Burbank and E12 Sugars in Tubers at Harvest and After Storage at Adams County, Washington in 2010	.34
Table A-6. Acrylamide in Fries from Russet Burbank and E12 at Harvest and After Storage at Adams	
County, Washington in 2010	.34
Table A-7. Proximates, Vitamins, and Minerals in E12 and Control Russet Burbank at Adams County,	
Washington in 2011	. 35
Table A-8. Total Amino Acids in E12 and Control Russet Burbank at Adams County, Washington in 201	1 .36
Table A-9. Glycoalkaloids in E12 and Control Russet Burbank in Adams County, Washington in 2011	.37
Table A-10. Free Amino Acids in Tubers of E12 and Control Russet Burbank in Adams County,	
Washington in 2011	.37
Table A-11. Russet Burbank and E12 Sugars in Tubers at Harvest and After Storage at Adams County,	
Washington in 2011	. 38
Table A-12. Acrylamide in Fries from Russet Burbank and E12 at Harvest and After Storage at Adams	
County, Washington in 2011	. 38
Table A-13. Proximates, Vitamins, and Minerals in E12 and Control Russet Burbank at Bingham County	<i>I</i> ,
Idaho in 2009	. 39
Table A-14. Total Amino Acids in E12 and Control Russet Burbank at Bingham County, Idaho in 2009	.40
Table A-15. Glycoalkaloids in E12 and Control Russet Burbank at Bingham County, Idaho in 2009	.41
Table A-16. Free Amino Acids in Tubers of E12 and Control Russet Burbank at Bingham County, Idaho	in
2009	.41

Table A-17. Russet Burbank and E12 Sugars in Tubers at Harvest and After Storage at Bingham County, Idaho in 2009
Table A-18. Acrylamide in Fries from Russet Burbank and E12 at Harvest and After Storage at Bingham
Table A-19. Proximates, Vitamins, and Minerals in E12 and Control Russet Burbank at Bingham County,
10a110 111 2010
Table A-20. Total Amino Acids in E12 and Control Russet Burbank at Bingham County, Idaho in 2010 44 Table A-21. Glycoalkaloids in E12 and Control Russet Burbank at Bingham County, Idaho in 2010
2010 /5
Table A-23. Russet Burbank and E12 Sugars in Tubers at Harvest and After Storage at Bingham County,
Table A-24. Acrylamide in Fries from Russet Burbank and E12 at Harvest and After Storage at Bingham
Table A-25. Proximates, Vitamins, and Minerals in E12 and Control Russet Burbank at Bingham County,
Idano in 2011
Table A-26. Total Amino Acids in E12 and Control Russet Burbank at Bingham County, Idaho in 2011 48
Table A-27. Glycoalkaloids in E12 and Control Russet Burbank at Bingham County, Idaho in 201149
Table A-28. Free Amino Acids in Tubers of E12 and Control Russet Burbank at Bingham County, Idaho in 2011 49
Table A-29 Russet Burbank and F12 Sugars in Tubers at Harvest and After Storage at Bingham County
Idaba in 2011
Table A 20 Acrillaria in Fries from Ducest Durbard and E12 at the rest and After Charges at Discharge
County, Idaho in 2011
Table A-31. Proximates, Vitamins, and Minerals in E12 and Control Russet Burbank at Canyon County,Idaho in 200951
Table A-32. Total Amino Acids in E12 and Control Russet Burbank at Canyon County, Idaho in 200952
Table A-33. Glycoalkaloids in F12 and Control Russet Burbank at Canvon County, Idaho in 2009
Table A-34. Free Amino Acids in Tubers of E12 and Control Russet Burbank at Canyon County, Idaho in 2009
Table A 25 Purcent Purbank and E12 Sugars in Tubers at Harvest and After Storage at Canvon County
Idaho in 2009
Table A-36. Acrylamide in Fries from Russet Burbank and E12 at Harvest and After Storage at Canyon
County. Idaho in 2009
Table A-37 Proximates Vitamins and Minerals in F12 and Control Russet Burbank at Canyon County
Idabo in 2010
Table A.28 Total Amino Acids in E12 and Control Dusset Durbank at Canyon County Idaha in 2010 56
Table A 30. Chicaralkalaida in E12 and Control Russet Burbark at Carrier County, Idaha in 2010
Table A-59. Glycoalkalolus in E12 and Control Russet Burbank at Canyon County, Idano in 2010
Table A-40. Free Amino Acids in Tubers of E12 and Control Russet Burbank at Canyon County, Idaho in
2010

Table A-41. Russet Burbank and E12 Sugars in Tubers at Harvest and After Storage at Canyon County,
Table A-42. Acrylamide in Fries from Russet Burbank and E12 at Harvest and After Storage at Canyon County, Idaho in 2010
Table A-43. Proximates, Vitamins, and Minerals in E12 and Control Russet Burbank at Canyon County, Idaho in 2011
Table A-44. Total Amino Acids in E12 and Control Russet Burbank at Canyon County, Idaho in 201160Table A-45. Glycoalkaloids in E12 and Control Russet Burbank at Canyon County, Idaho in 201161Table A-46. Free Amino Acids in Tubers of E12 and Control Russet Burbank at Canyon County, Idaho in 201161
Table A-47. Russet Burbank and E12 Sugars in Tubers at Harvest and After Storage at Canyon County, Idaho in 2011
Table A-48. Acrylamide in Fries from Russet Burbank and E12 at Harvest and After Storage at Canyon County. Idaho in 2011
Table A-49. Proximates, Vitamins, and Minerals in E12 and Control Russet Burbank at Larimore County, North Dakota in 2010
Table A-50. Total Amino Acids in E12 and Control Russet Burbank at Larimore County, North Dakota in 2010 64
Table A-51. Glycoalkaloids in E12 and Control Russet Burbank at Larimore County, North Dakota in 2010
Table A-52. Free Amino Acids in Tubers of E12 and Control Russet Burbank at Larimore County, North Dakota in 2010
Table A-53. Russet Burbank and E12 Sugars in Tubers at Harvest and After Storage at Larimore County, North Dakota in 2010
Table A-54. Acrylamide in Fries from Russet Burbank and E12 at Harvest and After Storage at LarimoreCounty, North Dakota in 2010Table A-55. Proximates, Vitamins, and Minerals in E12 and Control Russet Burbank at Larimore County,
North Dakota in 2011
Table A-57. Glycoalkaloids in E12 and Control Russet Burbank at Larimore County, North Dakota in 2011
Table A-58. Free Amino Acids in Tubers of E12 and Control Russet Burbank at Larimore County, NorthDakota in 201169
Table A-59. Russet Burbank and E12 Sugars in Tubers at Harvest and After Storage at Larimore County,North Dakota in 2011
Table A-60. Acrylamide in Fries from Russet Burbank and E12 at Harvest and After Storage at LarimoreCounty, North Dakota in 201170
Table A-61. Proximates, Vitamins, and Minerals in E12 and Control Russet Burbank at Montcalm County,Michigan in 2009

Table A-62. Total Amino Acids in E12 and Control Russet Burbank at Montcalm County, Michigan in 2009
Table A-63. Glycoalkaloids in E12 and Control Russet Burbank at Montcalm County, Michigan in 2009 .73
Table A-64. Free Amino Acids in Tubers of E12 and Control Russet Burbank at Montcalm County,
Michigan in 200973
Table A-65. Russet Burbank and E12 Sugars in Tubers at Harvest and After Storage at Montcalm County,
Michigan in 200974
Table A-66. Acrylamide in Fries from Russet Burbank and E12 at Harvest and After Storage at Montcalm
County, Michigan in 200974

ABSTRACT

The purpose of this study was to evaluate the nutritional composition and trait efficacy of potato event E12 compared with its parental control, Russet Burbank. Commercially available reference varieties with a history of safe use for food and feed were also grown as comparators. Field trials were conducted at a total of eleven sites during the 2009, 2010, and 2011 growing seasons. Plots of the test, control, and reference varieties were harvested, and tubers were assessed for those analytes important to potato nutrition as well as those related specifically to gene down-regulation and trait efficacy. The nutritional assessment, evaluating proximates, vitamins, minerals, amino acids, and glycoalkaloids demonstrated that E12 is compositionally equivalent to Russet Burbank. As expected, the efficacy assessment evaluating free amino acids and reducing sugars as well as acrylamide concentrations in fries demonstrated that E12 has lower levels of free asparagine, lower levels of reducing sugars, and lower acrylamide potential in fries than Russet Burbank.

INTRODUCTION

Potato event E12 was generated by transforming the Russet Burbank variety with pSIM1278 using *Agrobacterium* transformation. Traits conferred by the genetic elements of the T-DNA include lower free asparagine and reducing sugars, which together contribute to lower acrylamide potential in cooked potatoes, as well as reduced black spot.

STUDY OBJECTIVES

- 1. Compare the nutrient composition of E12 to its parental control and conventional potato varieties.
- 2. Determine trait efficacy of E12 with respect to free asparagine, reducing sugars, and acrylamide.

STUDY DATES

Field trials for tuber generation for compositional analysis were conducted during the 2009, 2010 and 2011 field seasons.

PERFORMING LABORATORIES

Simplot Plant Sciences, Boise, ID Covance Laboratories, Inc., Madison, WI

In 2009 and 2010, samples for E12 and its parental control Russet Burbank, were analyzed in combination by the J.R. Simplot Company and Covance Laboratories, Inc.

In 2011, analyses were completed by Covance Laboratories, Inc.

METHODS

Selection of Control Varieties

To ensure accurate evaluation of E12, proper selection of control varieties was important. For E12, the most relevant comparator is Russet Burbank, its parental variety. The only difference between E12 and Russet Burbank is that E12 underwent transformation and contains a pSIM1278 insert.

Conventional non-transformed potato varieties with a history of safe use for food and feed were used as reference varieties. These varieties are commonly used in the chip, fry, dehydrated and fresh markets. The following reference varieties were grown to provide a range of values common to conventional potatoes: Atlantic, Chieftain, IdaRose, Red Norland, Ranger Russet, Snowden, and two proprietary varieties.

Field Trials

During the growing seasons of 2009, 2010 and 2011, E12 and its parental control were grown at eleven locations in potato growing regions of the United States. At most sites, additional varieties were grown as references to provide a range of values common to conventional potatoes. All reference varieties summarized in this study can be found inTable 1.

The agronomic practices and pest control measures used were location-specific and were typical for all aspects of potato cultivation including soil preparation, fertilizer application, irrigation and pesticide-based control methods.

Location, seed type, trial design and size are provided in Table 1. A combination of field-grown G1 and G2 seed as well as mini-tubers were used as planting material. These mini-tubers were produced by growing tissue culture plants hydroponically, enabling multiple seed harvests from each plant. The generation of seed used was not expected to impact composition or trait efficacy.

The experiments were established in a randomized complete block design (RCB). The RCB design is typical for the evaluation of new potato varieties and events.

In an RCB field trial, the experimental unit is a plot. A plot contains only one treatment (potato variety) and is planted with a specified number of seed tubers. Plots were typically 1-3 rows wide and 20 feet long. Typical seed spacing for potatoes is one tuber per foot of row. Therefore, 60 seed tubers would be planted to create a plot 3 rows wide and 20 feet long.

The treatments included the test, control, and reference varieties. In some cases, additional varieties being evaluated were included in the experimental design. A plot of each treatment is included once in each block (replicate). All plots within each block are independently randomized so that the treatments are in random order. There were typically three blocks in each experiment at each site.

Table 1 details the experimental design specifics for each site such as the generation of the seed tubers, the number of rows per plot, the number of seed pieces per row, and the number of blocks.

Table 1. Field Trial Locations for E12 and Russet Burbank

Year	State	County	Trial Design ¹	Rows x Planted Tubers/Row	Seed Type
2009	Idaho	Canyon	RCB, 3 reps/entry	1x20	Mini-tubers (GO)
2009	Idaho	Bingham	RCB, 3 reps/entry	1x20	Mini-tubers (GO)
2009	Michigan	Montcalm	RCB, 3 reps/entry	1x20	Mini-tubers (GO)
2010	Idaho	Bingham	RCB, 3 reps/entry	3x20	Field seed (G1)
2010	Idaho	Canyon	RCB, 3 reps/entry	3x20	Field seed (G1)
2010	North Dakota	Grand Forks	RCB, 3 reps/entry	3x20	Field seed (G1)
2010	Washington	Adams	RCB, 3 reps/entry	3x20	Field seed (G1)
2011	Idaho	Canyon	RCB, 3 reps/entry	3x20	Field seed (G2)
2011	Idaho	Bingham	RCB, 3 reps/entry	3x20	Field seed (G2)
2011	North Dakota	Grand Forks	RCB, 3 reps/entry	3x20	Field seed (G2)
2011	Washington	Adams	RCB, 3 reps/entry	3x20	Field seed (G2)

¹Randomized Complete Block Designs contained the same number of blocks as the number of reps in the table.

Table 2. Field Trial List for Reference Varieties

Year	State	County	Reference Varieties ¹
2009	Idaho	Bingham	Ranger Russet, Russet
			Burbank
2009	Idaho	Canyon	Atlantic, Ranger Russet,
			Russet Burbank
2009	Michigan	Montcalm	Ranger Russet, Russet
			Burbank
2010	Florida	St. John's	2 Proprietary Varieties
2010	Idaho	Bingham	Atlantic, IdaRose, Ranger
			Russet, Russet Burbank,
			Snowden, 2 Proprietary
			Varieties
2010	Idaho	Canyon	Atlantic, Ranger Russet, Red
			Norland, Russet Burbank,
			Snowden
2010	Michigan	Missaukee	Atlantic, Snowden,
			2 Proprietary Varieties
2010	Michigan	Montcalm	Atlantic, Snowden,
			2 Proprietary Varieties
2010	Michigan	Montcalm	Red Norland, Snowden
2010	Nebraska	Cherry	Atlantic
2010	North Dakota	Grand Forks	Atlantic, Ranger Russet, Red
			Norland, Russet Burbank,
			Snowden
2010	Washington	Adams	Atlantic, Chieftain, Ranger
			Russet, Red Norland, Russet
			Burbank, Snowden
2010	Wisconsin	Oneida	Atlantic, Snowden,
			2 Proprietary Varieties
2010	Wisconsin	Adams	Atlantic, Red Norland,
			Snowden
2011	Florida	St John's	Atlantic, Snowden
2011	Idaho	Bingham	Atlantic, Ranger Russet,
			Russet Burbank, Snowden
2011	Idaho	Canyon	Ranger Russet, Russet
			Burbank, Snowden
2011	Indiana	Pulaski	Atlantic, Snowden
2011	North Dakota	Grand Forks	Atlantic, Ranger Russet,
2014			Russet Burbank, Snowden
2011	IVIICNIgan	Montcalm	Atlantic
2011	Michigan	Montcalm	Snowden
2011	wasnington	Adams	Atlantic, Kanger Russet,
2011			Russet Burbank, Snowden
2011	Wisconsin	Adams	Atlantic , Snowden

¹Because Ranger Russet is both the control and a conventional potato variety with history of safe use as food and feed, it was used as both the control and in calculating tolerance intervals. The inclusion of Ranger Russet in the tolerance interval did not impact the statistical analysis, since it was calculated separately from the statistical comparisons.

Trials in the same county over multiple years were not in the same location. Plots were in different fields, or in different places on the farm due to crop rotation requirements. Field conditions such as environment, field history, soil type, pest presence, and drainage, for example, can differ from year to year. Each county and year combination was considered a unique site.

MATERIALS

Sample Collection. Test, control and reference tubers for the compositional assessment were collected from the 2009, 2010 and 2011 field trial locations listed in Table 1 and 2. Each sample consisted of five randomly selected tubers, from each site and replicate. Selected tubers were about 6 inches in length.

Testing Facility. Analytical testing for Russet Burbank samples was completed partially by the J.R. Simplot Co., Boise, ID in 2009 and 2010, with the remainder done by Covance Laboratories, Inc., Madison, WI. In 2011, all analyses were completed at Covance. Clarification of testing location by analysis is provided in Table 3. Although data were generated in two laboratories, both used published procedures for the analyses. Therefore, the data from both labs were combined in the statistical analysis.

	2009	2010	2011
Analysis	Ranger Russet, Russet Burbank	Ranger Russet, Russet Burbank, Atlantic, Snowden, Chieftain, Red Norland, IdaRose	Ranger Russet, Russet Burbank, Atlantic, Snowden
Key Proximates, Vitamins and Minerals	Covance	Covance	Covance
Total Amino Acids	Simplot	Simplot	Covance
Glycoalkaloids	Simplot	Simplot	Covance
Vitamin C	Simplot	Simplot	Covance
Free Amino Acids	Simplot	Simplot	Covance
Sugars	Simplot	Simplot	Covance
Acrylamide	Covance	Covance	Covance

Table 3. Laboratory Facilities Used for Compositional Analysis

Sample preparation. Three to nine longitudinal slices with skin from each tuber were taken from the top, bottom, and center of the tuber. Samples were immediately frozen in liquid N₂. These samples were freeze-dried, ground and stored at -80 °C until ready for analysis.

For acrylamide testing, samples of E12 and Russet Burbank potatoes were processed into fries, using standard practice for the foodservice fry industry. Reference varieties were not made into fries.

Moisture content: Simplot Lab. The percentage moisture content was determined by measuring the mass of a tuber before and after the water was removed by freeze-drying. The equation used for calculation was:

% Moisture = [(M_{Initial}- M_{Dried})/M_{Initial}] x 100

Moisture content: Covance Labs. Moisture levels were determined by Covance Laboratories using Covance protocol M100T100_S:4 (Method 925.09 and Method 926.08. AOAC, 2005).

Ash: Covance Labs. Ash levels were determined by Covance Laboratories using Covance protocol ASHM_S:5 (Method 923.03. AOAC, 2005).

Carbohydrates: Covance Labs. Carbohydrate levels were determined by Covance Laboratories using Covance protocol CHO:6 (USDA, 1973).

Calories: Covance Labs. Total calories were determined by Covance Laboratories using Covance protocol CALC:4 (USDA, 1975).

Crude Fiber: Covance Labs. Crude fiber was determined by Covance Laboratories using Covance protocol CFIB_S:2 (Method 962.09. AOAC, 2005).

Elements by ICP Emission Spectrometry: Covance Labs. The minerals Copper (Cu), Magnesium (Mg), and Potassium (K) were determined by Covance Laboratories using Covance protocol (ICP_S:13) (Method 984.27 and Method 985.01. AOAC, 2005).

Fat: Covance Labs. Fat was determined by Acid Hydrolysis using Covance protocol FAAH_S:7(Method 922.06 and Method 954.02. AOAC, 2005).

Niacin: Covance Labs. Niacin was determined by Covance Laboratories using Covance protocol NIAP_S:11 (Method 944.13 and Method 960.46. AOAC, 2005).

Protein: Covance Labs. Protein was determined using the Kjeldahl method, approximating protein by multiplying Nitrogen by 6.25, as per Covance protocol PGEN_S:4 (Method 955.04 and Method 979.09. AOAC, 2005).

Pyridoxine: Pyridoxine was determined by Covance Laboratories using Covance protocol B6A_S:11 (Method 961.15. AOAC, 2005; Atkin, 1943).

Vitamin C and glycoalkaloids: Simplot Lab. Vitamin C and total glycoalkaloids (sum of α -chaconine and α -solanine) were extracted by following a fast extraction method as previously described by Shakya and Navarre, 2006, with slight modification. Freeze-dried tuber powder (about 200 mg) was placed into a 2 ml screw cap tube with 0.9 ml of extraction buffer (50% methanol, 3.0% metaphosphoric acid, 1 mM EDTA) and 500 mg of 1.0 mm glass beads. Tubes were shaken in a BeadBeater (Biospec, Bartelsville, OK) for 10 min at maximum speed, centrifuged for 5 min at 4 °C and the supernatant was transferred to a clean tube. The remaining pellet was re-extracted with 0.6 ml of extraction buffer and centrifuged. The supernatants were combined, centrifuged, and concentrated in a SpeedVac (Thermo Savant, Waltham, MA) prior to HPLC analysis. Gallic acid was added as an internal standard for quantification. Samples were kept chilled and protected from bright light at all times.

An Agilent 1200 HPLC system (Agilent Technologies) equipped with an on-line solvent degasser, quaternary pump, refrigerated autosampler, column heater, and variable wavelength diode-array (DAD) and MS detectors was used for sample analysis. Monolithic HPLC column Onyx C18, 100 x 4.6

(Phenomenex) was used with optimized parameters. Column temperature was 35 °C, flow of 1 ml/min with a gradient elution of 0–1 min 100% buffer A (10 mM formic acid, pH 3.5, with NH₄OH), 1–9 min 0–30% buffer B (100% methanol with 5 mM ammonium formate), 9–10.5 min 30% buffer B, 10.5–14 min 35–65% buffer B, 14-16 min 65%-100% buffer B, and 16-16.5 min 100% buffer B. Data acquisition and instrument parameters were controlled using the Agilent ChemStation. UV Diode-Array Detector (DAD) detection and quantification were at wavelength 244 nm for vitamin C and 210 nm for glycoalkaloids. The external standard method of calibration was used, with each curve prepared from 6 to 8 different concentrations of standard solutions.

Vitamin C and glycoalkaloid levels were further confirmed by LC-MS analysis with an Agilent 1200 HPLC coupled to 6320 ion trap LC/MS. Experiments were carried out with an ESI source in negative ion mode for vitamin C and positive ion mode for glycoalkaloids. The source was operated using 350 °C drying gas (N2) at 12 L/min, 55 psi nebulizer gas (N₂), and the source voltage with a scan range of m/z 100-1300. Automated MS (2) analysis was conducted using SmartFrag and Agilent ChemStation software (Agilent) with a ramp range from 1500-4500 V.

Vitamin C: Covance Labs. Vitamin C levels were determined by Covance Laboratories using protocol VCF_S:5 (Method 967.22. AOAC, 2005).

Glycoalkaloids: Covance Labs. Glycoalkaloid levels were determined by Covance Laboratories using protocol COID_S:2 (AOAC, 2006).

Free amino acids: Simplot Lab. Free amino acids were extracted by homogenizing 250 mg ground freeze-dried tubers with 5 µmol sarcosine as an internal standard in 3.0 ml 0.03 M triethylamine HCl buffer and adding (a) 150 μ 85 mM K hexacyanoferrate trihydrate (K₄Fe(CN)₆3H₂O), (b) 150 μ L 100 mM zinc sulfate (ZnSO₄.7H₂O), and (c) 250 μ L 0.1 N NaOH with 3.0 ml 0.03 M TEA buffer pH 7.0, vortexing the mixture after each addition. The extract was centrifuged for 15 min at 4 °C at 4,000 rpm, and the supernatant was transferred to a new tube. The pellet was re-suspended in 5 ml nanopure water and centrifuged. The first and second supernatants were pooled and the final volume was adjusted to 12.5 ml with water. The extracted free amino acids were derivatized using the EZ:faast method according to the user's manual from the manufacturer (Phenomenex, Torrance, CA). Derivatized samples were analyzed by liquid chromatography-mass spectrometry (LC-MS) using an Agilent 1200 series HPLC system that was coupled to an Agilent 6300 series ion trap. Bruker's quant analysis software was used for quantification. For HPLC, we used a 25.0 x 0.3 cm EZ:faast AAA-MS column, and the mobile phase was 10 mM ammonium formate in water (A) and 10 mM ammonium formate in methanol 1:2, v/v(B), flow rate 0.25 min/ml with a gradient of 68-83% B in 13 min and 13-18 min 68% buffer B. MS was run in the positive mode with ESI and auto MSⁿ. The limit of quantitation for most matrices was 10mg/100 g dry weight (or 100 ppm in the fresh weight).

Free amino acids: Covance Labs. Free amino acid levels were determined by Covance Laboratories using the Covance protocol FAALC_S:6 (Barkholt and Jensen, 1989; Henderson, 2000; Schuster, 1988).

Tryptophan: Covance Labs. Tryptophan levels were determined by Covance Laboratories using the Covance protocol -TRPLC_S:3 (Method 988.15. AOAC, 2005).

Total amino acids: Simplot Lab. Amino acid hydrolysis for total amino acid analysis was performed as previously described (Miedel et al., 1989; Purcell et al., 1972) with optimization. About 50 mg freeze dried tissue was weighed and transferred into the bottom of a vacuum hydrolysis tube (5 ml, 10mm x 100 mm (Wilmad LabGlass, NJ). A 1 ml aliquot of constant boiling, 6N hydrochloric acid (Thermo Scientific/Pierce, IL) in the presence of 4 % thioglycholic acid was added directly to the sample. Vacuum was applied until no air bubbles were seen and the tube was sealed slowly by screwing the PTFE plug down. The hydrolysis was carried at 110 °C for 24 hr on a dry block heating system (Reacti-therm heating module, Thermo Scientific/Pierce, IL). Following hydrolysis and cooling, pressure in the tube was released slowly. The sample was removed by Pasteur pipette and a 20 µL aliquot of the sample was vacuum dried using an acid resistant speedVac (Savant SC250DDA, Thermo Scientific, IL). Samples were re-suspended in water to make a 10 fold dilution and centrifuged. TRP, cystine and CYS are unstable during acid hydrolysis and so were not estimated quantitatively. GLN and ASN are deaminated to form GLU and ASP. An aliquot of the supernatant was subjected to solid phase extraction (SPE) and derivatization steps using the EZ-faast: easy-fast amino acid sample testing kit (Phenomenex, Torrance, CA) as per manual. The derivatized amino acids were analyzed using a LC/MS instrument (Agilent Technologies) as described in free amino acid analysis.

Total amino acids: Covance Labs. Total amino acid levels were determined by Covance Laboratories using the Covance protocol TAALC_S:6 (Barkholt and Jensen, 1989; Henderson, 2000; Schuster, 1988).

Sugars: Simplot Lab. Sugars were extracted by shaking approximately 150 mg freeze-dried tissues in 1 ml 60% ethanol at 80 °C for 1 h. The supernatant was transferred into a fresh tube, and the pellet was re-extracted with 1 ml 60% ethanol for 30 min at 80 °C. The supernatant volume was reduced in a Speedvac to 60 to 70 μ L. A known amount of ribose was added as an internal standard. Sugar analyses were performed on an Agilent 1200 series HPLC system, which consisted of an auto sampler, Zorbax carbohydrate column (4.6 × 150 mm, Agilent Technologies, USA), a solvent system of acetonitrile-water (75 : 25), and a refractive index detector, at a flow rate of 1 ml/min. Sugars were quantified using Agilent ChemStation software with external calibration.

Sugars: Covance Labs. Sugar levels were determined by Covance Laboratories using High Performance Anion Exchange Chromatograph (HPAEC) equipped with a Pulsed Amperometric Detector (PAD) and following Covance protocol SWET_S:9 (Lilla et al., 2005).

Acrylamide: The acrylamide levels were determined by Covance Laboratories in Greenfield, IN using the Covance protocol ACMS_GRN_S:4 (FDA, 2003).

Statistical Analysis. All attributes were analyzed using JMP (SAS Institute, Cary, NC) by combining data from multiple test years and locations using the following linear mixed model:

- $Y_{ijklm} = \alpha_{i+}\beta_j + \gamma_{k(j)} + \delta_{l(j,k)} + (\alpha \gamma)_{ik} + \varepsilon_{ijklm}$
- α = mean of treatment (fixed)
- β = year (random)
- γ = effect of location [year] (random)
- $\delta = rep[year, location]$ (random)
- ϵ = residual random error

Where α_i denotes the mean of the *i*th treatment (fixed effect), β_j denotes the effect of the *j*th year (random effect), $\gamma_{k(j)}\gamma_{k(i)}$ are the random location (within year effect), $\delta_{l(j,k)}$ are the rep within year and location effect, ($\alpha \gamma$)_{ik} denotes the interaction between the *i*th treatment and random *k*th location within year effect, and ε_{ijklm} denotes the residual random error.

All data was tested for normality before conducting the analysis mentioned here.

In cases where all data were from one trial year, the statistical model did not include the year term. Data from multiple locations were analyzed together using the following linear mixed model:

- $Y_{ijk} = \alpha_{i+}\beta_j + \gamma_{k(j)} + (\alpha \beta)_{ij} + \varepsilon_{ijk}$
- α = mean of treatment (fixed effect)
- β = effect of location (random)
- *γ* = rep within location effect (random)
- ε = residual random error

Where α_i denotes the mean of the *i*th treatment (fixed effect), β_j denotes the effect of the *j*th location (random effect), $\gamma_{k(j)}$ are the random replicate (within location) effects, $(\alpha \beta)_{ij}$ denotes the interaction between *i*th treatment and *j*th location (random effect), and ε_{ijk} denotes the residual random error.

For the by site analyses, data from each location were analyzed using the following linear mixed model:

- $Y_{ij} = \alpha_{i+}\beta_j + \varepsilon_{ij}$
- α = mean of treatment (fixed effect)
- β = effect of rep (random)
- ε = residual random error

Where α_i denotes the mean of the *i*th treatment (fixed effect), β_j denotes the effect of the *j*th rep (random effect), and ε_{ii} denotes the residual random error.

A significant difference was established with a p-value ≤ 0.05 .

The following varieties, all grown in the field trial sites, were used to calculate tolerance intervals (Vardeman, 1992): Atlantic, Chieftain, IdaRose, Ranger Russet, Red Norland, Russet Burbank, Snowden and two proprietary varieties. The tolerance interval represents measurements from conventional varieties by using data from all controls and reference varieties from all sites in this study.

The parental control, Russet Burbank was used as a reference variety because of its widespread popularity and its history of safe use as food and feed. The inclusion of the control in the tolerance interval did not impact the statistical analysis because the tolerance interval was a separate calculation.

The tolerance intervals were calculated using JMP to contain, with 95% confidence, 99% of the values contained in the population.

This tolerance interval and the combined range of values for each analyte available from the published literature were used to interpret the composition results. In interpreting the data, emphasis was placed on the analyte means; means that fell within the tolerance interval and/or combined literature range for the analyte were considered to be within the normal variability of commercial potato varieties.

RESULTS

A compositional analysis of E12 was conducted to evaluate the levels of key nutrients (proximates, vitamins, amino acids, and minerals) and glycoalkaloids compared to the parental control, Russet Burbank. In addition, concentrations of free amino acids, sugars, and acrylamide were evaluated in E12 and its parental control to measure efficacy of the low acrylamide potential and lowered reducing sugars traits. A summary of analytes tested can be found in

Table 4.

These analytes were selected by considering the important nutritional components of potatoes (OECD, 2002), the analytes expected to be altered based on the inserted DNA, and those analytes considered important in the potato industry. Tables 5 through 10 summarize data from across all sites and years. By-site data tables can be found in Appendix A.

Table 4. Tuber Composition Analytes Measured

Proximates and Fiber (7)										
Protein	Fat	Ash								
Crude Fiber	Carbohydrates	Calories								
Moisture										
	Vitamins (3)									
Vitamin B3	Vitamin B6	Vitamin C								
Minerals (3)										
Copper	Magnesium	Potassium								
Total Amino Acids (18)										
Alanine	Histidine	Proline								
Arginine	Isoleucine	Serine								
Aspartic Acid + Asparagine	Leucine	Threonine								
Cystine (including cysteine)	Lysine	Tryptophan								
Glutamic Acid + Glutamine	Methionine	Tyrosine								
Glycine	Phenylalanine	Valine								
	Free Amino Acids (4)									
Asparagine	Aspartic Acid	Glutamine								
Glutamic Acid										
	Sugars (2)									
Fructose + Glucose ¹	Sucrose ¹									
	Anti-Nutrients (2)									
Glycoalkaloids	Acrylamide ²									

¹analyzed in both fresh tissue and at various monthly intervals.

²analyzed in processed materials from both fresh tissue and from tubers at various monthly intervals.

NUTRITIONAL ANALYSIS RESULTS FOR RUSSET BURBANK AND E12

These analyses were conducted to confirm that composition of E12 remained within the range for commercial potato varieties and has equivalent food quality, feed quality, and safety when compared to its parental control, Russet Burbank, and conventional potatoes. The compositional assessments determined the concentrations of:

- 1) Proximates, vitamins, and minerals (Table 5)
- 2) Total amino acids (Table 6)
- 3) Glycoalkaloids (Table 7)

Proximates, Vitamins, and Minerals

Table 5. Proximates, Vitamins, and Minerals in E12 and Control Russet Burbank

Variable	Variety	Mean	P-Value ¹	Standard Deviation	N	Range		Tolerance Interval		Combined Literature Range ²		
						Min	Max	Min	Max	Min	Max	
Protein (%)	E12	2.30	0.8796	0.443	33	1.47	3.02	1 26	2 50	0.7	16	
Protein (%)	Control	2.32		0.431	33	1.64	3.10	1.20	3.59	0.7	4.0	
Fat (%)	E12	0.100	0.9772	0.0323	33	0.0500	0.200	0	0.241	0.02	0.2	
Fat (%)	Control	0.100	•	0.0365	32	0.0300	0.200	0	0.341	0.02	0.2	
Ash (%)	E12	1.05	0.5871	0.294	32	0	1.46	0 3 9 1	1 89	0.44	19	
Ash (%)	Control	1.08		0.307	33	0.150	2.00	0.551	1.05	0.44	1.5	
CrudeFiber (%)	E12	0.470	0.8625	0.107	33	0.330	0.700	0 142	0 690	0 17	35	
CrudeFiber (%)	Control	0.470		0.0979	33	0.320	0.640	0.142	0.050	0.17	5.5	
Carbohydrates (%)	E12	18.5	0.9866	1.78	33	14.2	22.2	123	25.9	13.3	30 53	
Carbohydrates (%)	Control	18.5		1.55	33	16.1	21.1	12.5	23.5	15.5	30.53	
Calories (kcal/100 g)	E12	83.9	0.9537	6.49	33	64.9	96.3	50.1	115	70	110.2	
Calories (kcal/100 g)	Control	84.0		5.54	33	73.1	93.3	59.1	115	70	110.2	
Moisture (%)	E12	78.1	0.8815	1.52	33	75.5	82.5	70.2	02.0	62.2	86.0	
Moisture (%)	Control	78.0	•	1.36	33	75.5	80.4	70.5	05.9	05.2	80.9	
Vitamin B3 (mg/100 g)	E12	1.90	0.7264	0.277	33	1.43	2.53	0.022	2 1 2	0.09	2.1	
Vitamin B3 (mg/100 g)	Control	1.87		0.268	33	1.44	2.38	0.922	5.12		5.1	
Vitamin B6 (mg/100 g)	E12	0.140	0.9380	0.0317	33	0.110	0.230	0.0590	0 192	0.12	0.41	
Vitamin B6 (mg/100 g)	Control	0.14		0.0241	33	0.110	0.200	0.0390	0.192	0.15	0.41	
Vitamin C (mg/110 g)	E12	18.3	0.3510	5.50	33	11.8	32.9	0	120	1	54	
Vitamin C (mg/110 g)	Control	16.8		8.20	33	8.88	42.9	0	129	T	54	
Copper (ppm)	E12	1	0.6422	0.227	33	0.540	1.52	0 1 1 1	2.24	0.15	7	
Copper (ppm)	Control	0.960	•	0.242	33	0.500	1.34	0.111	2.24	0.15	/	
Magnesium (ppm)	E12	246	0.7238	49.4	33	188	405	102	372	112 5	550	
Magnesium (ppm)	Control	242		45.9	33	165	350	102	572	112.5	550	
Potassium (ppm)	E12	4,777	0.6940	1,042	33	3,550	6,537	2 711	6 882	3 500	6 250	
Potassium (ppm)	Control	4,681		951	33	3,040	6,339	2,711	0,002	3,300	0,230	

¹P-values indicating significant differences with controls are underlined.

²Combined literature ranges are from, Horton and Anderson, 1992; Lisinska and Leszczynski, 1989; Rogan et al., 2000; Talburt and Smith, 1987.

No statistical differences were found between E12 and Burbank for the proximates, vitamins and minerals measured (Table 5). All mean values for E12 were within the tolerance interval and/or the combined literature range.

Total Amino Acids

A total of eighteen amino acids were measured as seen in Table 6.

Although expected, a significant difference between E12 and the control, Russet Burbank, was noted for ASP+ASN and GLU+GLN. ASP+ASN was expected to be lower and GLU+GLN was expected to be higher in E12 than in Russet Burbank because of the down-regulation of the *Asn1* gene. In each case, the mean for E12 was within the tolerance interval and/or the combined literature range, so E12 was considered equivalent to conventional potatoes.

A significant difference between E12 and the control was also noted for three additional total amino acids (Table 6): arginine, cystine (including cysteine) and methionine. In all cases, the mean values for E12 were within the tolerance interval and/or the combined literature range.

Table 6. Total Amino Acids in E12 and Control Russet Burbank

Variable	Variety	Mean (ppm)	P-Value ¹	Standard Deviation	N	Rai	nge	Tole Int	erance :erval	Combined Literature Range ²	
						Min	Max	Min	Max	Min	Max
Alanine	E12	718	0.8299	145	33	430	1,053	100	4.005	202	050
Alanine	Control	704		245	33	323	1,258	100	1,335	392	952
Arginine	E12	1,080	<u>0.0314</u>	454	33	490	2,159	260	1 0 2 2	700	1 2 9 2
Arginine	Control	945		296	33	508	1,731	506	1,922	700	1,505
ASP+ASN	E12	2,846	<u><.0001</u>	947	33	1,874	5,114	100	13 340	3 385	7 380
ASP+ASN	Control	5,391		1,492	33	2,090	8,228	100	13,340	3,303	7,500
Cystine ³	E12	219	<u>0.0455</u>	39.8	12	162	282	0	471	286	12,500
Cystine ³	Control	186		38.8	12	118	251	-			
GLU+GLN	E12	4,843	<u><.0001</u>	1,010	33	3,517	7,376	568	7,011	2,915	6,035
GLU+GLN	Control	3,051		549	33	1,840	3,982		- ,		0,000
Glycine	E12	1,329	0.4886	760	33	489	2,885	100	2.865	500	1.990
Glycine	Control	1,459	•	937	33	307	3,548		_,		_/
Histidine	E12	426	0.2571	216	33	170	991	100	701	122	460
Histidine	Control	373		157	33	100	762	100	/01	133	469
Isoleucine	E12	705	0.7803	197	33	406	1,266	1/15	1 246	525	052
Isoleucine	Control	687		128	33	372	912	145	1,540	323	333
Leucine	E12	1,266	0.6831	329	33	804	2,024	177	2 174	685	1 2 9 2
Leucine	Control	1,228		295	33	530	1,783	4//	2,174	085	1,565
Lysine	E12	1,111	0.2049	248	33	763	1,795	100	3 363	687	1,368
Lysine	Control	894		176	33	560	1,304	100	5,505		
Methionine	E12	418	<u>0.0410</u>	152	33	228	826	100	502	300	500
Methionine	Control	368		104	33	186	617	100	333		
Phenylalanine	E12	799	0.7459	201	33	542	1,247	207	1 205	550	1097
Phenylalanine	Control	787		178	33	417	1,150	357	1,395	552	1087
Proline	E12	768	0.4801	239	33	487	1,425	100	1 492	355	1 464
Proline	Control	718		229	33	321	1,415	100	1,452	555	1,404
Serine	E12	575	0.5840	209	33	220	985	100	1 362	500	1 022
Serine	Control	548		169	33	214	817	100	1,502	500	1,022
Threonine	E12	659	0.7744	286	33	299	1,347	226	1.315	500	1.022
Threonine	Control	646		243	33	220	1,331		1,010		1,022
Tryptophan ³	E12	204	0.5724	24.9	12	163	237	115	425	126	955
Tryptophan ³	Control	200		14.9	12	182	224	115	455	430	655
Tyrosine	E12	620	0.3040	203	33	266	989	100	1 522	457	0.02
Tyrosine	Control	562		127	33	328	792	100	1,523	457	942
Valine	E12	1,076	0.2361	196	33	612	1,519	100	1.860	752	1.450
Valine	Control	1,176		324	33	564	2,012	2 100	1,000	, 52	1,450

¹P-values indicating significant differences with controls are underlined.

²Combined literature ranges are from Lisinska and Leszczynski, 1989; OECD, 2002; Rogan et al., 2000; Talley et al., 1984.

³Cystine and tryptophan measured in 2011 only.

Glycoalkaloids

Glycoalkaloids are toxins commonly found in Solanaceous crops, including potato, and 95% of the total glycoalkaloids in potato tubers consists of α -solanine and α -chaconine (OECD, 2002). The widely accepted safety limit for total glycoalkaloids in tubers is 20 mg/100 gm fresh weight (Smith et al., 1996).

The mean concentration of glycoalkaloids in E12 was not statistically different from the control, was lower than the generally accepted safety limit, and fell within the tolerance interval and/or the combined literature range (Table 7).

Table 7. Glycoalkaloids in E12 and Control Russet Burbank

Variable	Variety	Mean (mg/100g)	P-Value ¹	Standard Deviation	N	Range		Tolerance Interval		Combined Literature Range ²	
						Min	Max	Min	Max	Min	Max
Glycoalkaloids	E12	5.68	0.0524	2.06	33	1.69	10.5	0	22.1	2.20	210.4
	Control	7.40		3.49	33	2.74	18.6	U	33.1	3.20	210.4

¹P-values indicating significant differences with controls are underlined. ²Combined literature ranges from Kozukue et al., 2008.

EFFICACY ANALYSIS RESULTS FOR RUSSET BURBANK AND E12

An assessment of trait efficacy of E12 for low acrylamide potential and lowered reducing sugars consisted of the following analyses:

- 1) Free amino acids (Table 8) in tubers
- 2) Reducing Sugars (Table 9) in tubers
- 3) Acrylamide (Table 10) in tubers

Free Amino Acids

Free amino acid analysis demonstrated that, as expected, down-regulation of *Asn1* was effective in reducing free asparagine in tubers. The results show that E12 tubers contained statistically less free asparagine and statistically more free glutamine than Russet Burbank tubers (Table 8). However, the mean concentrations of free asparagine and free glutamine for E12 were still within the tolerance intervals and/or the combined literature range and therefore considered within the normal range for potatoes.

Variable	Variety Mean (ppm) P-Value ² Standard N Range		inge	Tolerance Interval			Combined Literature Range ³				
						Min	Max	Min	Max	Min	Max
Asparagine	E12	618	<u><.0001</u>	173	33	425	1,250	F.0.0	4 05 2	212	C 000
Asparagine	Control	2,421	•	901	33	822	4,030	500	4,952	312	6,890
Aspartic Acid	E12	448	0.9073	130	33	293	824	100	1 411	C A	750
Aspartic Acid	Control	439		137	33	280	760	100	1,411	64	732
Glutamine	E12	1997	<u><.0001</u>	663	33	865	3,490	100	2 4 4 0	110	5 <i>,</i> 3964
Glutamine	Control	1111		292	33	605	1,700	100	3,449	440	
Glutamic Acid	E12	460	0.9008	133	33	227	741	100	1 102	450	740
Glutamic Acid	Control	466		133	33	221	689	100	1,192	450	742

Table 8. Free Amino Acids in Tubers of E12 and Control Russet Burbank¹

¹Free amino acids were included to show efficacy of reducing free ASN and thus reducing acrylamide. If values fell below detection limits, they were adjusted to the limit of detection (100 ppm) for statistical analysis. ²P-values indicating significant differences with controls are underlined.

³Combined literature ranges are from Davies, 1977; Lisinska and Leszczynski, 1989; Shepherd et al., 2010. ⁴For glutamine, the maximum value from the CLR high level is reported as 5,396 ppm from the mean of four sites (Davies, 1977). A value of 18,244 ppm from a single site was not included because it appeared to be an outlier.

Reducing Sugars

The E12 event contains expression cassettes designed to lower levels of reducing sugars fructose and glucose in tubers. A down-regulation cassette for the promoters of the starch-associated gene (R1) and the phosphorylase-L gene (PhL) was introduced in E12. These traits are intended to function by slowing the conversion of starch to the reducing sugars glucose and fructose.

Mean results for fructose plus glucose and sucrose levels were within range of the tolerance interval values for fresh, one, three and five months storage for event E12. Partial down-regulation of *R1* and *PhL* resulted in lower levels of reducing sugars at harvest and after one month storage with statistical differences found only at 1 month of storage (Table 9). Values for three and five months were similar for both E12 and the control.

Variable	Variety	Mean	P-Value ¹	Standard Deviation	N	Range		Tolerance Interval		Combined Literature Range ²			
						Min	Max	Min	Max	Min	Max		
	Fructose and Glucose (%)												
Eroch ³	E12	0.160	0.1101	0.0760	12	0.0690	0.339	0	0 207	0.018	0.802		
TTEST	Control	0.195		0.0943	12	0.0530	0.357	0	0.307	0.010	0.803		
Month	E12	0.107	<u>0.0051</u>	0.0612	21	0.0340	0.251	0	0 207	0.010	0.802		
14	Control	0.162		0.0946	21	0.0530	0.393	U	0.507	0.016	0.803		
Month	E12	0.249	0.2001	0.151	25	0.0810	0.580	0	0.207	0.018	0.803		
35 Co	Control	0.290		0.155	27	0.117	0.660	U	0.507	0.016			
Month E	E12	0.145	0.2885	0.0909	18	0.0850	0.489	0	0.207	0.018	0.803		
5 ⁶	Control	0.190		0.151	20	0.0920	0.630	0	0.307				
				Sucro	se (%	5)							
Eroch ³	E12	0.213	0.2115	0.0653	12	0.134	0.299	0	0.215	0.0207	1 20		
Fresh	Control	0.179		0.0608	11	0.113	0.288	0	0.315	0.0397	1.39		
Month	E12	0.132	<u>0.0123</u>	0.0583	21	0.0600	0.258						
14	Control	0.168		0.0601	21	0.103	0.252	0	0.315	0.0397	1.39		
Month	E12	0.0734	0.5109	0.0246	25	0.0340	0.126	0	0.215	0.0207	1 20		
35	Control	0.0793		0.0203	27	0.0470	0.121	0	0.315	0.0597	1.59		
Month	E12	0.0882	0.5554	0.0259	18	0.0510	0.141	0	0.215	0.0207	1 20		
5 ⁶	Control	0.0792		0.0288	21	0.0350	0.127	U	0.313	0.0397	1.39		

Table 9. Russet Burbank and E12 Sugars in Tubers at Harvest and After Storage

¹ P-values indicating significant differences with controls are underlined.

² Literature Ranges from Amrein et al., 2003; Vivanti et al., 2006.

³Tubers from the fresh time point were analyzed from all sites in 2011.

⁴ Tubers from the 1 month time point were analyzed from all sites in 2009 and 2010.

⁵ Tubers from the 3 month time point were analyzed from all sites in 2009 and 2010 and from Bingham and Adams counties in 2011.

⁶ Tubers from the 5 month time point were analyzed from all sites in 2009 and 2010.

Acrylamide

Lowered asparagine, fructose and glucose levels led to an overall reduction of acrylamide in processed potato as they are reactants in the formation of acrylamide. To demonstrate the lower potential acrylamide trait, field-grown tubers of E12 and Russet Burbank at harvest and after 2, 3, 5, 6, and 7 months of storage were processed into cooked fries, and the acrylamide concentration was measured (Table 10).

At the time of harvest, fries made with E12 tubers contained 67.2% less acrylamide than fries made with Russet Burbank (Table 10). When potatoes were stored for 2 months, acrylamide concentrations in E12 were 69.6% lower than the control. Acrylamide concentrations in E12 fries were statistically lower than Russet Burbank fries after tuber storage for 3, 5, and 6 months. The significantly lower acrylamide levels after storage were expected from down-regulation of the *Asn1*, *R1* and *PhL* genes, thus reducing the

reactants free asparagine and reducing sugars. Similar reductions in reducing sugars and acrylamide were reported by Zhu et al., 2014.

A combined literature range is not provided due to the fact different cooking temperatures and times vary and affect acrylamide levels in processed potatoes. Because of this, acrylamide levels from literature may not be comparable to event E12 or Russet Burbank. Mean results for acrylamide levels were within range of the tolerance interval.

Variable	Variety	Mean (nnh)	P- Value ¹	Standard	N	Percent	Ra	nge	Tolerance Interval	
		(PPD)	Value	Deviation		Neudelion	Min	Max	Min	Max
F 12	E12	162	<u>0.0340</u>	56	24	(7.2	95.0	298	0	2 100
Fresh	Control	494		130	24	67.2	286	770	0	3,198
Month	E12	237	0.1700	13	9	60.6	209	251	0	2 109
2 ³	Control	779		125	9	69.6	619	950	U	3,198
	E12	315	<u><.0001</u>	97	24		169	254	0	3,198
3 ⁴	Control	814		230	24	61.3	502	1,240		
Month	E12	82.0	<u><.0001</u>	10	9		67.0	97.0		
<mark>5</mark> ⁵	Control	230		20	9	64.3	207	260	0	3,198
Month	E12	192	<u>0.0019</u>	66	12	ED 1	105	272	0	2 109
6 ⁶	Control	401		175	12	32.1	234	776	0	3,198
Month	E12	192	0.8835	26	3	71.0	165	217	0	3,198
77	Control	661		55	3	/1.0	598	693	0	

Table 10. Acrylamide in Fries from Russet Burbank and E12 at Harvest and After Storage

¹P-values indicating significant differences with controls are underlined.

²Tubers from the fresh time point were analyzed from all sites in 2010 and 2011.

³Tubers from the 2 month time point were analyzed from all sites in 2009.

⁴Tubers from the 3 month time point were analyzed from all sites in 2010 and 2011.

⁵Tubers from the 5 month time point were analyzed from all sites in 2009.

⁶Tubers from the 6 month time point were analyzed from all sites in 2010.

⁷Tubers from the 7 month time point were analyzed only from the Canyon County site in 2009.

CONCLUSION

A compositional assessment was conducted on E12 and its parental control, Russet Burbank. Two types of analyses were conducted:

- Compositional nutritional assessment, for those analytes important to potato nutrition; and
- Traits affecting composition, for those analytes related specifically to gene down-regulation and trait efficacy.

The nutritional assessment, evaluating proximates, vitamins, minerals, amino acids, and glycoalkaloids demonstrated that E12 is compositionally equivalent to Russet Burbank and is as safe and nutritious for food and feed as conventional potatoes that have a long history of safe consumption.

As expected, the efficacy assessment evaluating free amino acids and reducing sugars as well as acrylamide concentrations in fries demonstrated that E12 has lower levels of free asparagine, lower levels of reducing sugars, and lower acrylamide potential in fries than Russet Burbank.

APPENDIX A

The following analytes are summarized for each individual field trial site throughout the growing seasons of 2009, 2010, and 2011 in tables A1 through A66:

1) Proximates, vitamins, and minerals

- 2) Total amino acids
- 3) Glycoalkaloids
- 4) Free amino acids
- 5) Reducing sugars
- 6) Acrylamide

As mentioned in the footnotes in tables 6, 9, and 10, exceptions in data collection are summarized below:

Total Amino Acids

• Cystine and tryptophan were measured only in 2011

Reducing Sugars

- Tubers from the fresh time point were analyzed from all sites in 2011.
- Tubers from the 1 month time point were analyzed from all sites in 2009 and 2010.
- Tubers from the 3 month time point were analyzed from all sites in 2009 and 2010 and from Bingham and Adams counties in 2011.
- Tubers from the 5 month time point were analyzed from all sites in 2009 and 2010.

Acrylamide

- Tubers from the fresh time point were analyzed from all sites in 2010 and 2011.
- Tubers from the 2 month time point were analyzed from all sites in 2009.
- Tubers from the 3 month time point were analyzed from all sites in 2010 and 2011.
- Tubers from the 5 month time point were analyzed from all sites in 2009.
- Tubers from the 6 month time point were analyzed from all sites in 2010.
- Tubers from the 7 month time point were analyzed from the Canyon County site in 2009.

Table A-1. Proximates, Vitamins, and Minerals in E12 and Control Russet Burbank at Adams County, Washington in 2010

Variable	Variety	Mean	P-Value	Standard Deviation	Ν	Min	Max
Protein (%)	E12	2.66	0.2286	0.182	3	2.50	2.86
Protein (%)	Control	2.86		0.223	3	2.65	3.10
Fat (%)	E12	0.0900	0.8842	0.0441	3	0.0600	0.140
Fat (%)	Control	0.0900		0.0149	3	0.0800	0.110
Ash (%)	E12	1.27	0.1283	0.0595	3	1.21	1.33
Ash (%)	Control	1.34		0.0872	3	1.24	1.41
Crude Fiber (%)	E12	0.540	0.5502	0.0042	3	0.530	0.540
Crude Fiber (%)	Control	0.520		0.0494	3	0.480	0.570
Carbohydrates (%)	E12	17.9	0.2275	0.422	3	17.4	18.2
Carbohydrates (%)	Control	17.3		0.922	3	16.3	18.2
Calories (kcal/100g)	E12	83.1	0.4071	2.36	3	80.4	84.7
Calories (kcal/100g)	Control	81.3		3.23	3	78.5	84.8
Moist (%)	E12	78.1	0.4823	0.580	3	77.7	78.7
Moist (%)	Control	78.5		0.808	3	77.5	79.1
Vitamin B3 (mg/100 g)	E12	1.98	0.8789	0.0380	3	1.94	2.02
Vitamin B3 (mg/100 g)	Control	2.00		0.105	3	1.88	2.07
Vitamin B6 (mg/100 g)	E12	0.120	0.5137	0.0082	3	0.120	0.130
Vitamin B6 (mg/100 g)	Control	0.130		0.0130	3	0.120	0.140
Vitamin C (mg/110 g)	E12	13.3	<u>0.0064</u>	1.49	3	11.8	14.8
Vitamin C (mg/110 g)	Control	9.59	•	0.500	3	9.24	10.2
Copper (ppm)	E12	1.20	0.7262	0.0649	3	1.15	1.27
Copper (ppm)	Control	1.24		0.0809	3	1.19	1.34
Magnesium (ppm)	E12	286	0.4169	7.23	3	281	294
Magnesium (ppm)	Control	270		9.88	3	261	281
Potassium (ppm)	E12	6,426	0.1984	127	3	6,288	6,537
Potassium (ppm)	Control	6,073		150	3	5,918	6,217

Table A-2. Total Amino Acids in E12 and Control Russet Burbank at Adams County, Washington in2010

Variable	Variety	Mean (ppm)	P-Value ¹	Standard Deviation	Ν	Min	Max
Alanine	E12	583	0.5838	42.3	3	538	623
Alanine	Control	641	•	58.6	3	585	702
Arginine	E12	840	0.4064	98.9	3	738	935
Arginine	Control	737		59.2	3	696	805
ASP+ASN	E12	2,625	0.0012	540	3	2,206	3,235
ASP+ASN	Control	6,915		539	3	6,466	7,513
Cystine	E12				0		
Cystine	Control	•			0	•	
GLU+GLN	E12	4,848	<u>0.0035</u>	795	3	4,240	5,747
GLU+GLN	Control	3,099		306	3	2,796	3,408
Glycine	E12	1,467	0.7257	54.8	3	1,404	1,507
Glycine	Control	1,414		41.7	3	1,389	1,462
Histidine	E12	212	0.3345	38.6	3	190	256
Histidine	Control	312		62.2	3	262	382
Isoleucine	E12	552	0.1286	104	3	446	653
Isoleucine	Control	729		33.3	3	691	753
Leucine	E12	1,223	0.7600	235	3	968	1,431
Leucine	Control	1,273		37.4	3	1,243	1,315
Lysine	E12	907	0.7239	146	3	763	1,056
Lysine	Control	791	•	28.8	3	758	809
Methionine	E12	328	0.3990	34.4	3	301	367
Methionine	Control	369		32.3	3	337	402
Phenylalanine	E12	683	0.2205	109	3	577	794
Phenylalanine	Control	785	•	71.0	3	711	852
Proline	E12	587	0.7228	106	3	497	704
Proline	Control	651		34.0	3	614	681
Serine	E12	529	0.7015	9.30	3	521	539
Serine	Control	554	•	44.3	3	513	601
Threonine	E12	544	0.7933	137	3	403	675
Threonine	Control	507	•	61.3	3	436	546
Tryptophan	E12	•	•	NA	0		
Tryptophan	Control	•		NA	0		
Tyrosine	E12	495	0.4356	108	3	384	600
Tyrosine	Control	611		25.9	3	585	637
Valine	E12	809	0.0188	144	3	643	896
Valine	Control	1,193		77.7	3	1,142	1,282

Variable	Variety	Mean mg/100 g	P-Value	Standard Deviation	N	Min	Max
Glycoalkaloids	E12	2.16	0.1815	0.758	3	1.69	3.04
	Control	3.91		1.39	3	2.74	5.45

Table A-3. Glycoalkaloids in E12 and Control Russet Burbank in Adams County, Washington in 2010

Table A-4. Free Amino Acids in Tubers of E12 and Control Russet Burbank in Adams County, Washington in 2010

Variable	Line	Mean (ppm)	P-Value	Standard Deviation	N	Min	Max
Asparagine	E12	541	<u><.0001</u>	59.3	3	490	606
Asparagine	Control	3 <i>,</i> 052		164	3	2,956	3,242
Aspartic Acid	E12	671	0.7587	134	3	577	824
Aspartic Acid	Control	720		40.1	3	680	760
Glutamine	E12	2,164	<u>0.0239</u>	432	3	1,899	2,662
Glutamine	Control	1,296		47.6	3	1,243	1,333
Glutamic Acid	E12	470	0.3217	35.5	3	435	506
Glutamic Acid	Control	571		80.7	3	515	664

Table A-5. Russet Burbank and E12 Sugars in Tubers at Harvest and After Storage at Adams County,Washington in 2010

Timing	Variety	Mean	P-Value	Standard Deviation	Ν	Min	Max						
	Fructose and Glucose (%)												
Frach	E12	•			0								
Flesh	Control	•			0								
Month 1	E12	0.0433	0.1267	0.0082	3	0.0340	0.0494						
	Control	0.0621		0.0106	3	0.0532	0.0738						
Manth 2	E12	0.146	<u>0.0055</u>	0.0058	3	0.139	0.149						
Wonth 3	Control	0.227		0.0419	3	0.186	0.270						
Manth F	E12	0.171	0.6205	0.0338	3	0.135	0.202						
wonth 5	Control	0.145		0.0415	3	0.111	0.192						
			Sucrose	(%)									
Frach	E12	•			0								
FIESH	Control	•			0								
Month 1	E12	0.103	0.8188	0.0151	3	0.0898	0.120						
NOUTU I	Control	0.107		0.0040	3	0.103	0.111						
Month 2	E12	0.0427	<u>0.0018</u>	0.0078	3	0.0339	0.0485						
worth 3	Control	0.0795		0.0249	3	0.0555	0.105						
Month E	E12	0.0616	0.0116	0.0084	3	0.0528	0.0696						
WOITTI 5	Control	0.0420		0.0092	3	0.0366	0.0527						

Table A-6. Acrylamide in Fries from Russet Burbank and E12 at Harvest and After Storage at AdamsCounty, Washington in 2010

Timing	Variety	Mean (ppb)	P-Value	Standard Deviation	Ν	Min	Max
Month 0	E12	111	<u>0.0035</u>	13.7	3	102	127
Month 0	Control	422		64.5	3	348	468
	E12	238	<u><.0001</u>	27.9	3	206	257
wonth 3	Control	759		96.8	3	654	845
Marsth C	E12	109	<u><.0001</u>	3.51	3	105	112
WOITT 6	Control	350		47.6	3	322	405

Table A-7. Proximates, Vitamins, and Minerals in E12 and Control Russet Burbank at Adams County, Washington in 2011

Variable	Variety	Mean	P-Value	Standard Deviation	Ν	Min	Max
Protein (%)	E12	2.50	0.4151	0.117	3	2.37	2.59
Protein (%)	Control	2.37		0.0404	3	2.33	2.41
Fat (%)	E12	0.100	1.0000	0	3	0.100	0.100
Fat (%)	Control	0.100		0	3	0.100	0.100
Ash (%)	E12	1.08	0.7980	0.110	3	0.980	1.20
Ash (%)	Control	1.06		0.100	3	0.990	1.17
Crude Fiber (%)	E12	0.350	0.5286	0.0199	3	0.330	0.370
Crude Fiber (%)	Control	0.330		0.0023	3	0.330	0.340
Carbohydrates (%)	E12	19.0	0.3160	0.351	3	18.6	19.3
Carbohydrates (%)	Control	19.8		0.513	3	19.2	20.2
Calories (kcal/100 g)	E12	86.0	0.4235	1.50	3	84.8	87.7
Calories (kcal/100 g)	Control	88.9		2.45	3	86.4	91.3
Moisture (%)	E12	77.4	0.4545	0.265	3	77.1	77.6
Moisture (%)	Control	76.8	•	0.451	3	76.3	77.2
Vitamin B3 (mg/100 g)	E12	1.76	0.7151	0.0153	3	1.75	1.78
Vitamin B3 (mg/100 g)	Control	1.72		0.104	3	1.60	1.80
Vitamin B6 (mg/100 g)	E12	0.140	0.7863	0.0036	3	0.140	0.140
Vitamin B6 (mg/100 g)	Control	0.140		0.0071	3	0.140	0.150
Vitamin C (mg/110 g)	E12	22.7	0.8505	1.63	3	20.9	24.1
Vitamin C (mg/110 g)	Control	23.5		0.551	3	22.9	24.0
Copper (ppm)	E12	0.870	0.8022	0.0800	3	0.780	0.940
Copper (ppm)	Control	0.850		0.114	3	0.770	0.980
Magnesium (ppm)	E12	205	0.6556	8.50	3	195	211
Magnesium (ppm)	Control	211		4.16	3	206	214
Potassium (ppm)	E12	3,720	0.9362	70.0	3	3,640	3,770
Potassium (ppm)	Control	3,700		87.2	3	3,640	3,800

Table A-8. Total Amino Acids in E12 and Control Russet Burbank at Adams County, Washington in2011

Variable	Variety	Mean (ppm)	P-Value ¹	Standard Deviation	Ν	Min	Max
Alanine	E12	806	0.0012	16.2	3	797	825
Alanine	Control	689		27.9	3	<mark>657</mark>	708
Arginine	E12	1,347	<u>0.0049</u>	50.3	3	1,300	1,400
Arginine	Control	1,153		11.5	3	1,140	1,160
ASP+ASN	E12	2,923	<u><.0001</u>	297	3	2,670	3,250
ASP+ASN	Control	5,610		139	3	5,530	5,770
Cystine	E12	268	<u>0.0007</u>	12.9	3	257	282
Cystine	Control	199		6.66	3	192	205
GLU+GLN	E12	6,063	<u><.0001</u>	817	3	5,120	<mark>6,560</mark>
GLU+GLN	Control	3,500		276	3	3,210	3,760
Glycine	E12	648	<u>0.0216</u>	19.0	3	627	<mark>664</mark>
Glycine	Control	571		16.7	3	<mark>558</mark>	590
Histidine	E12	356	0.0708	11.2	3	344	366
Histidine	Control	327		6.66	3	323	335
Isoleucine	E12	879	<u>0.0288</u>	1.73	3	878	881
Isoleucine	Control	803		20.7	3	784	825
Leucine	E12	1,233	<u>0.0375</u>	20.8	3	1,210	1,250
Leucine	Control	1,097		46.2	3	1,070	1,150
Lysine	E12	1,183	<u>0.0451</u>	40.4	3	1,140	1,220
Lysine	Control	1,093		15.3	3	1,080	1,110
Methionine	E12	459	<u>0.0018</u>	3.79	3	456	463
Methionine	Control	400		11.0	3	389	411
Phenylalanine	E12	1,027	<u>0.0497</u>	15.3	3	1,010	1,040
Phenylalanine	Control	935		6.35	3	928	939
Proline	E12	781	0.1345	38.9	3	746	823
Proline	Control	671		38.7	3	<mark>635</mark>	712
Serine	E12	899	<u>0.0091</u>	17.2	3	880	914
Serine	Control	792		13.6	3	779	806
Threonine	E12	812	0.0155	32.0	3	775	831
Threonine	Control	708		20.8	3	<mark>691</mark>	731
Tryptophan	E12	223	0.4390	11.5	3	210	232
Tryptophan	Control	213		4.36	3	208	216
Tyrosine	E12	919	<u><.0001</u>	18.0	3	902	938
Tyrosine	Control	690		22.6	3	671	715
Valine	E12	1,303	0.0029	23.1	3	1,290	1,330
Valine	Control	1,170		10	3	1,160	1,180

Variable	Variety	Mean mg/100 g	P-Value	Standard Deviation	N	Min	Max
Glycoalkaloids	E12	5.00	0.7496	0	3	5.00	5.00
	Control	5.29		0.502	3	5.00	5.87

Table A-9. Glycoalkaloids in E12 and Control Russet Burbank in Adams County, Washington in 2011

Table A-10. Free Amino Acids in Tubers of E12 and Control Russet Burbank in Adams County, Washington in 2011

Variable	Line	Mean (ppm)	P-Value	Standard Deviation	N	Min	Max
Asparagine	E12	995	<u><.0001</u>	221	3	859	1,250
Asparagine	Control	3,703		181	3	3,570	3,910
Aspartic Acid	E12	499	0.0814	5.86	3	492	503
Aspartic Acid	Control	458		9.29	3	448	466
Glutamine	E12	3,263	<u><.0001</u>	375	3	2,830	3,490
Glutamine	Control	1,427		246	3	1,170	1,660
Glutamic Acid	E12	676	<u>0.0418</u>	56.1	3	640	741
Glutamic Acid	Control	588		25.0	3	571	617

Table A-11. Russet Burbank and E12 Sugars in Tubers at Harvest and After Storage at Adams County,Washington in 2011

Timing	Variety	Mean	P-Value	Standard Deviation	N	Min	Max					
Fructose and Glucose (%)												
Freeb	E12	0.130	0.1650	0.0235	3	0.103	0.144					
Fresh	Control	0.187	•	0.0185	3	0.169	0.206					
Manth 1	E12	•	•	•	0	•						
WONTH 1	Control	•			0	•						
Manth 2	E12	0.383	0.4482	0.0521	3	0.349	0.443					
Wonth 3	Control	0.346	•	0.0080	3	0.338	0.354					
Manth F	E12	•	•	•	0	•						
wonth 5	Control	•	•	•	0	•						
			Sucrose	(%)								
Freeb	E12	0.144	0.7689	0.0068	3	0.136	0.149					
Fresh	Control	0.154	•	0.0182	3	0.139	0.174					
Month 1	E12	•			0							
	Control				0							
	E12	0.0974	0.1818	0.0039	3	0.0932	0.101					
wonth 3	Control	0.105		0.0044	3	0.102	0.110					
Month E	E12	•			0							
	Control	•			0							

Table A-12. Acrylamide in Fries from Russet Burbank and E12 at Harvest and After Storage at AdamsCounty, Washington in 2011

Timing	Variety	Mean (ppb)	P-Value	Standard Deviation	Z	Min	Max
Month 0	E12	170	<u><.0001</u>	4.04	3	165	172
	Control	400		29.7	3	366	422
Month 3	E12	308	<u><.0001</u>	35.9	3	281	349
	Control	699		50.3	3	662	756

Table A-13. Proximates, Vitamins, and Minerals in E12 and Control Russet Burbank at Bingham County, Idaho in 2009

Variable	Variety	Mean	P-Value	Standard Deviation	Ν	Min	Max
Protein (%)	E12	2.18	<u><.0001</u>	0.0564	3	2.12	2.23
Protein (%)	Control	2.40		0.0034	3	2.40	2.40
Fat (%)	E12	0.0900	0.0904	0.0205	3	0.0700	0.110
Fat (%)	Control	0.0700		0.0061	3	0.0600	0.0700
Ash (%)	E12	0.960	0.7838	0.0681	3	0.890	1.01
Ash (%)	Control	0.970		0.0198	3	0.960	0.990
Crude Fiber (%)	E12	0.410	0.4644	0.0126	3	0.400	0.430
Crude Fiber (%)	Control	0.420		0.0043	3	0.420	0.430
Carbohydrates (%)	E12	17.3	<u><.0001</u>	0.471	3	17.0	17.9
Carbohydrates (%)	Control	16.3		0.0847	3	16.2	16.4
Calories (kcal/100 g)	E12	78.9	<u>0.0008</u>	2.18	3	77.5	81.4
Calories (kcal/100 g)	Control	75.4		0.317	3	75.1	75.7
Moisture (%)	E12	79.4	<u>0.0014</u>	0.570	3	78.8	79.8
Moisture (%)	Control	80.3		0.0666	3	80.2	80.3
Vitamin B3 (mg/100 g)	E12	1.70	0.1607	0.0625	3	1.63	1.74
Vitamin B3 (mg/100 g)	Control	1.58		0.101	3	1.47	1.66
Vitamin B6 (mg/100 g)	E12	0.180	0.1707	0.0505	3	0.130	0.230
Vitamin B6 (mg/100 g)	Control	0.150		0.0078	3	0.140	0.160
Vitamin C (mg/110 g)	E12	13.7	<u><.0001</u>	0.294	3	13.4	13.9
Vitamin C (mg/110 g)	Control	11.3		0.266	3	11.1	11.6
Copper (ppm)	E12	0.850	0.4325	0.119	3	0.770	0.990
Copper (ppm)	Control	0.890		0.0216	3	0.860	0.910
Magnesium (ppm)	E12	198	0.8474	6.07	3	191	203
Magnesium (ppm)	Control	197		1.93	3	195	199
Potassium (ppm)	E12	4,369	<u>0.0431</u>	117	3	4,278	4,501
Potassium (ppm)	Control	4,195		74.1	3	4,133	4,277

Table A-14. Total Amino Acids in E12 and Control Russet Burbank at Bingham County, Idaho in 2009

Variable	Variety	Mean (ppm)	P-Value ¹	Standard Deviation	Ν	Min	Max
Alanine	E12	680	0.0698	66.0	3	620	751
Alanine	Control	565		26.1	3	536	587
Arginine	E12	2,076	0.0172	109	3	1,952	2,159
Arginine	Control	1,468	•	312	3	1,123	1,731
ASP+ASN	E12	4,668	<u><.0001</u>	519	3	4,098	5,114
ASP+ASN	Control	7,318	•	393	3	6,886	7,654
Cystine	E12				0		
Cystine	Control				0		
GLU+GLN	E12	6,784	<u><.0001</u>	519	3	6,405	7,376
GLU+GLN	Control	3,768	•	125	3	3,676	3,910
Glycine	E12	1,738	0.4181	162	3	1,574	1,898
Glycine	Control	1,476		248	3	1,215	1,710
Histidine	E12	677	0.0009	13.1	3	663	689
Histidine	Control	430		62.8	3	390	502
Isoleucine	E12	941	<u>0.0135</u>	55.6	3	880	990
Isoleucine	Control	743	•	125	3	604	846
Leucine	E12	1,837	0.1572	39.3	3	1,799	1,878
Leucine	Control	1,536		191	3	1,386	1,752
Lysine	E12	1,574	<u>0.0002</u>	207	3	1,383	1,795
Lysine	Control	942		118	3	871	1,078
Methionine	E12	568	0.4766	50.5	3	535	626
Methionine	Control	513		100	3	417	617
Phenylalanine	E12	1,120	0.5163	129	3	977	1,229
Phenylalanine	Control	1,034		136	3	884	1,150
Proline	E12	915	0.4361	52.2	3	860	963
Proline	Control	805		64.6	3	737	865
Serine	E12	846	<u>0.0167</u>	127	3	734	985
Serine	Control	492		55.9	3	435	546
Threonine	E12	1,040	<u>0.0264</u>	128	3	898	1,146
Threonine	Control	809		139	3	675	952
Tryptophan	E12			•	0		•
Tryptophan	Control				0		
Tyrosine	E12	893	0.0002	86.3	3	823	989
Tyrosine	Control	662	•	73.8	3	594	741
Valine	E12	1,125	0.7229	49.3	3	1,073	1,171
Valine	Control	1,090		194	3	933	1,307

Variable	Variety	Mean mg/100 g	P-Value	Standard Deviation	Ν	Min	Max
Glycoalkaloids	E12	4.58	<u><.0001</u>	0.111	3	4.50	4.71
	Control	10.1		0.094	3	10.0	10.2

Table A-15. Glycoalkaloids in E12 and Control Russet Burbank at Bingham County, Idaho in 2009

Table A-16. Free Amino Acids in Tubers of E12 and Control Russet Burbank at Bingham County, Id	laho
in 2009	

Variable	Line	Mean (ppm)	P-Value	Standard Deviation	N	Min	Max
Asparagine	E12	589	<u><.0001</u>	20.8	3	565	604
Asparagine	Control	1,703		130	3	1,562	1,819
Aspartic Acid	E12	527	0.6836	29.2	3	494	544
Aspartic Acid	Control	512	•	39.9	3	469	548
Glutamine	E12	1,783	<u><.0001</u>	40.6	3	1,738	1,815
Glutamine	Control	1,193		121	3	1,062	1,301
Glutamic Acid	E12	596	0.6734	72.9	3	545	679
Glutamic Acid	Control	571		129	3	433	689

Table A-17. Russet Burbank and E12 Sugars in Tubers at Harv	est and After Storage at Bingham County,
Idaho in 2009	

Timing	Variety	Mean	P-Value	Standard Deviation	Ν	Min	Max
		Fru	ctose and G	ilucose (%)			
Frach	E12			•	0		
Flesh	Control	•	•	•	0	•	•
Month 1	E12	0.109	<u><.0001</u>	0.0114	3	0.101	0.122
	Control	0.157		0.0124	3	0.146	0.170
Manth 2	E12	0.120	0.6565	0.0172	3	0.102	0.136
Month 3	Control	0.126	•	0.0076	3	0.117	0.130
Month F	E12	0.102	0.7172	0.0030	3	0.0988	0.104
WORTH 2	Control	0.104		0.0106	3	0.0920	0.112
			Sucrose	(%)			
Frach	E12				0		
Fresh	Control				0		
Month 1	E12	0.0655	<u><.0001</u>	0.0045	3	0.0603	0.0688
IVIONTN 1	Control	0.138		0.0062	3	0.132	0.145
Month 3	E12	0.0636	0.5711	0.0095	3	0.0528	0.0707
	Control	0.0678		0.0081	3	0.0587	0.0743
Month F	E12	0.0988	0.7169	0.0071	3	0.0945	0.107
ivionth 5	Control	0.0964		0.0087	3	0.0865	0.103

Table A-18. Acrylamide in Fries from Russet Burbank and E12 at Harvest and After Storage at BinghamCounty, Idaho in 2009

Timing	Variety	Mean (ppb)	P-Value	Standard Deviation	Ν	Min	Max
Month 2	E12	243	<u><.0001</u>	3	3	240	246
	Control	795		21.9	3	770	811
Month 5	E12	85.3	<u><.0001</u>	4.51	3	81.0	90.0
	Control	235		23.7	3	208	250
Month 7	E12				0		
	Control				0	•	•

Table A-19. Proximates, Vitamins, and Minerals in E12 and Control Russet Burbank at Bingham County, Idaho in 2010

Variable	Variety	Mean	P-Value	Standard Deviation	Ν	Min	Max
Protein (%)	E12	2.95	0.2034	0.0872	3	2.85	3.02
Protein (%)	Control	2.68		0.234	3	2.52	2.95
Fat (%)	E12	0.160	<u>0.0095</u>	0.0067	3	0.160	0.170
Fat (%)	Control	0.110		0.0057	3	0.100	0.110
Ash (%)	E12	1.30	0.5195	0.0454	3	1.25	1.33
Ash (%)	Control	1.25		0.0565	3	1.21	1.31
Crude Fiber (%)	E12	0.620	0.9139	0.0447	3	0.570	0.660
Crude Fiber (%)	Control	0.610		0.0278	3	0.580	0.640
Carbohydrates (%)	E12	17.1	0.6951	0.562	3	16.5	17.6
Carbohydrates (%)	Control	17.3		0.769	3	16.5	18.0
Calories (kcal/100 g)	E12	81.6	0.7959	2.60	3	78.7	83.8
Calories (kcal/100 g)	Control	81.0		3.47	3	77.0	83.5
Moisture (%)	E12	78.5	0.8195	0.686	3	77.9	79.3
Moisture (%)	Control	78.7	•	0.883	3	78.1	79.7
Vitamin B3 (mg/100 g)	E12	2.44	0.4115	0.108	3	2.32	2.53
Vitamin B3 (mg/100 g)	Control	2.28		0.123	3	2.14	2.38
Vitamin B6 (mg/100 g)	E12	0.120	0.4008	0.0082	3	0.110	0.120
Vitamin B6 (mg/100 g)	Control	0.120		0.0053	3	0.120	0.130
Vitamin C (mg/110 g)	E12	16.8	<u>0.0043</u>	0.929	3	15.8	17.6
Vitamin C (mg/110 g)	Control	12.7		1.83	3	11.0	14.6
Copper (ppm)	E12	1.35	0.1920	0.182	3	1.16	1.52
Copper (ppm)	Control	1.19		0.0598	3	1.14	1.26
Magnesium (ppm)	E12	287	0.8551	15.1	3	269	297
Magnesium (ppm)	Control	282		14.7	3	266	292
Potassium (ppm)	E12	6,172	0.4669	255	3	5,886	6,374
Potassium (ppm)	Control	5,840	•	152	3	5,735	6,014

Table A-20. Total Amino Acids in E12 and Control Russet Burbank at Bingham County, Idaho in 2010

Variable	Variety	Mean (ppm)	P-Value ¹	Standard Deviation	Ν	Min	Max
Alanine	E12	955	0.4089	64.2	3	899	1,025
Alanine	Control	1,178		61.7	3	1,112	1,234
Arginine	E12	846	0.0953	65.8	3	779	911
Arginine	Control	644	•	19.7	3	624	664
ASP+ASN	E12	1,975	<u>0.0276</u>	94.2	3	1,874	2,061
ASP+ASN	Control	4,337	•	196	3	4,170	4,553
Cystine	E12	•	•	•	0		•
Cystine	Control	•	•	•	0		•
GLU+GLN	E12	4,292	<u><.0001</u>	226	3	4,045	4,488
GLU+GLN	Control	2,435	•	388	3	2,163	2,879
Glycine	E12	2,635	0.1651	216	3	2,508	2,885
Glycine	Control	3,468		102	3	3,353	3,548
Histidine	E12	410	<u>0.0457</u>	134	3	263	525
Histidine	Control	247	•	30.0	3	214	272
Isoleucine	E12	765	0.5948	13.7	3	749	774
Isoleucine	Control	841		91.9	3	735	900
Leucine	E12	1,574	0.8112	59.7	3	1,511	1,630
Leucine	Control	1,516		92.2	3	1,410	1,577
Lysine	E12	1,194	0.1185	51.9	3	1,140	1,243
Lysine	Control	684		84.4	3	592	757
Methionine	E12	232	0.9937	4.89	3	228	237
Methionine	Control	232		47.1	3	186	280
Phenylalanine	E12	702	0.8972	14.3	3	685	711
Phenylalanine	Control	709		32.4	3	672	730
Proline	E12	1,363	0.7051	85.4	3	1,266	1,425
Proline	Control	1,291		108	3	1,218	1,415
Serine	E12	389	0.1698	19.2	3	371	409
Serine	Control	305		25.8	3	275	321
Threonine	E12	404	0.1125	11.8	3	393	416
Threonine	Control	258		41.7	3	220	303
Tryptophan	E12				0		
Tryptophan	Control				0		
Tyrosine	E12	372	0.9774	71.6	3	292	430
Tyrosine	Control	374	•	45.9	3	328	420
Valine	E12	1,302	0.2096	55.4	3	1,252	1,361
Valine	Control	1,785		136	3	1,634	1,897

Variable	Variety	Mean mg/100 g	P-Value	Standard Deviation	Ν	Min	Max
Glycoalkaloids	E12	5.14	0.4275	1.02	3	4.24	6.26
	Control	6.03		0.818	3	5.11	6.68

Table A-21. Glycoalkaloids in E12 and Control Russet Burbank at Bingham County, Idaho in 2010

Table A-22. Free Amino Acids in Tubers of E12 and Cor	trol Russet Burbank at Bingham County, Idaho
in 2010	

Variable	Line	Mean (ppm)	P-Value	Standard Deviation	Ν	Min	Max
Asparagine	E12	567	<u><.0001</u>	34.7	3	531	600
Asparagine	Control	2,735		158	3	2,557	2,861
Aspartic Acid	E12	448	0.8411	15.6	3	430	459
Aspartic Acid	Control	402		18.7	3	386	422
Glutamine	E12	2,182	<u>0.0109</u>	130	3	2,049	2,308
Glutamine	Control	1,216		114	3	1,095	1,322
Glutamic Acid	E12	340	0.7765	5.18	3	335	345
Glutamic Acid	Control	288		23.1	3	262	305

Table A-23. Russet Burbank and E12 Sugars in Tubers at Harvest and After Storage at Bingham County,Idaho in 2010

Timing	Variety	Mean	P-Value	Standard Deviation	N	Min	Max			
Fructose and Glucose (%)										
Fresh	E12				0		•			
FIESH	Control	•			0	•	•			
Month 1	E12	0.0918	<u>0.0187</u>	0.0331	3	0.0552	0.120			
NOUTU I	Control	0.160		0.0081	3	0.153	0.169			
Manth 2	E12	0.339	0.9634	0.0902	3	0.236	0.406			
Wonth 3	Control	0.337	•	0.0219	3	0.314	0.357			
Manth F	E12	0.136	0.5632	0.0249	2	0.119	0.154			
wonth 5	Control	0.163	•	0.0357	3	0.137	0.204			
			Sucrose	(%)						
Frach	E12	•			0	•	•			
Fresh	Control				0					
Month 1	E12	0.197	0.0796	0.0640	3	0.131	0.258			
	Control	0.248		0.0052	3	0.242	0.252			
Month 2	E12	0.0754	0.9891	0.0149	3	0.0632	0.0919			
	Control	0.0752		0.0033	3	0.0718	0.0784			
Month F	E12	0.0624	0.2018	0.0105	3	0.0526	0.0734			
worth 5	Control	0.0719		0.0157	3	0.0584	0.0891			

Table A-24. Acrylamide in Fries from Russet Burbank and E12 at Harvest and After Storage at BinghamCounty, Idaho in 2010

Timing	Variety	Mean (ppb)	P-Value	Standard Deviation	Ν	Min	Max
Month 0	E12	112	0.6184	3.79	3	108	115
	Control	451		14.6	3	436	465
Month 2	E12	240	<u><.0001</u>	55.4	3	176	277
IVIONUN 3	Control	900		105	3	828	1,020
Month 6	E12	238	<u><.0001</u>	12	3	226	250
	Control	674		88.9	3	615	776

Table A-25. Proximates, Vitamins, and Minerals in E12 and Control Russet Burbank at Bingham County, Idaho in 2011

Variable	Variety	Mean	P-Value	Standard Deviation	Ν	Min	Max
Protein (%)	E12	2.06	<u>0.0297</u>	0.0520	3	2.00	2.09
Protein (%)	Control	2.28		0.0854	3	2.19	2.36
Fat (%)	E12	0.100	0.1613	0	3	0.100	0.100
Fat (%)	Control	0.130		0.0577	3	0.100	0.200
Ash (%)	E12	1.16	0.2985	0.148	3	0.990	1.28
Ash (%)	Control	1.27		0.163	3	1.08	1.38
Crude Fiber (%)	E12	0.350	0.6248	0.0214	3	0.340	0.370
Crude Fiber (%)	Control	0.360		0.0626	3	0.320	0.430
Carbohydrates (%)	E12	15.6	0.0588	1.21	3	14.2	16.3
Carbohydrates (%)	Control	17.3		1.12	3	16.1	18.3
Calories (kcal/100 g)	E12	71.0	<u>0.0320</u>	5.27	3	64.9	74.4
Calories (kcal/100 g)	Control	79.3	•	5.71	3	73.1	84.3
Moisture (%)	E12	81.1	<u>0.0221</u>	1.19	3	80.3	82.5
Moisture (%)	Control	79.0		1.15	3	78.1	80.3
Vitamin B3 (mg/100 g)	E12	1.61	<u>0.0041</u>	0.0361	3	1.57	1.64
Vitamin B3 (mg/100 g)	Control	2.05		0.166	3	1.87	2.20
Vitamin B6 (mg/100 g)	E12	0.110	0.3404	0.0036	3	0.110	0.120
Vitamin B6 (mg/100 g)	Control	0.120		0.0031	3	0.120	0.120
Vitamin C (mg/110 g)	E12	18.6	0.0807	0.907	3	17.8	19.6
Vitamin C (mg/110 g)	Control	26.6		14.4	3	15.7	42.9
Copper (ppm)	E12	0.920	0.3738	0.0751	3	0.840	0.980
Copper (ppm)	Control	1.02		0.228	3	0.880	1.28
Magnesium (ppm)	E12	222	0.0550	1.53	3	220	223
Magnesium (ppm)	Control	253		19.0	3	234	272
Potassium (ppm)	E12	4,217	0.7909	491	3	3,660	4,590
Potassium (ppm)	Control	4,390		610	3	3,970	5,090

Variable	Variety	Mean (ppm)	P-Value ¹	Standard Deviation	Ν	Min	Max
Alanine	E12	690	0.1816	9.02	3	681	699
Alanine	Control	655		32.9	3	635	693
Arginine	E12	929	0.1036	62.6	3	862	986
Arginine	Control	1,077		155	3	952	1,250
ASP+ASN	E12	2,213	<u><.0001</u>	116	3	2,090	2,320
ASP+ASN	Control	5,123		622	3	4,730	5,840
Cystine	E12	185	0.5488	29.3	3	162	218
Cystine	Control	198		58.6	3	135	251
GLU+GLN	E12	4,757	<u><.0001</u>	233	3	4,490	4,920
GLU+GLN	Control	3,100		207	3	2,910	3,320
Glycine	E12	510	<u>0.0133</u>	18.1	3	489	523
Glycine	Control	<mark>58</mark> 5		86.7	3	513	681
Histidine	E12	311	<u>0.0154</u>	14.7	3	302	328
Histidine	Control	352		9.07	3	342	359
Isoleucine	E12	716	0.0238	14.2	3	707	732
Isoleucine	Control	781		42.4	3	746	828
Leucine	E12	998	0.1142	47.0	3	944	1,030
Leucine	Control	1,081		159	3	922	1,240
Lysine	E12	1,000	0.6499	43.0	3	951	1,030
Lysine	Control	1,019		64.1	3	947	1,070
Methionine	E12	398	0.6528	5.86	3	391	402
Methionine	Control	389		2.65	3	387	392
Phenylalanine	E12	790	<u>0.0051</u>	23.2	3	763	805
Phenylalanine	Control	881		68.4	3	806	940
Proline	E12	743	0.8566	76.2	3	670	822
Proline	Control	718		119	3	580	787
Serine	E12	657	<u>0.0046</u>	19.4	3	635	<mark>670</mark>
Serine	Control	745		68.4	3	681	817
Threonine	E12	658	<u>0.0469</u>	32.1	3	621	679
Threonine	Control	717		76.5	3	640	793
Tryptophan	E12	223	0.3522	17.2	3	204	237
Tryptophan	Control	210		17.2	3	191	224
Tyrosine	E12	692	<u>0.0149</u>	44.2	3	642	725
Tyrosine	Control	601		93.7	3	511	698
Valine	E12	1,030	0.0793	0	3	1,030	1,030
Valine	Control	1,100		20.0	3	1,080	1,120

Table A-26. Total Amino Acids in E12 and Control Russet Burbank at Bingham County, Idaho in 2011

Variable	Variety	Mean mg/100 g	P-Value	Standard Deviation	Ν	Min	Max
Glycoalkaloids	E12	7.98	0.8067	2.08	3	5.67	9.70
	Control	7.62		1.70	3	6.45	9.57

Table A-27. Glycoalkaloids in E12 and Control Russet Burbank at Bingham County, Idaho in 2011

Table A-28. Free Amino Acids in Tubers of E12 and Control Russet Burbank at Bingham County, Id	laho
in 2011	

Variable	Line	Mean (ppm)	P-Value	Standard Deviation	N	Min	Max
Asparagine	E12	699	<u><.0001</u>	20.6	3	678	719
Asparagine	Control	3,393		576	3	2,910	4,030
Aspartic Acid	E12	331	0.1929	26.7	3	310	361
Aspartic Acid	Control	365		74.2	3	294	442
Glutamine	E12	2,883	<u><.0001</u>	148	3	2,720	3,010
Glutamine	Control	1,360		311	3	1,090	1,700
Glutamic Acid	E12	409	<u>0.0208</u>	21.8	3	385	428
Glutamic Acid	Control	502		63.6	3	441	568

Table A-29. Russet Burbank and E12 Sugars in Tubers at Harvest and After Storage at Bingham County,Idaho in 2011

Timing	Variety	Mean	P-Value	Standard Deviation	N	Min	Max
		Fru	ctose and G	lucose (%)			
Frech	E12	0.242	0.7891	0.0841	3	0.186	0.339
Fresh	Control	0.259		0.0856	3	0.202	0.357
Month 1	E12				0		
	Control				0		
Month 2	E12	0.511	0.9149	0.0621	3	0.460	0.580
IVIONUN 3	Control	0.516		0.131	3	0.403	0.660
Month E	E12				0	•	
	Control				0	•	
			Sucrose	(%)			
Frosh	E12	0.209	0.4182	0.0722	3	0.134	0.278
FIESH	Control	0.175		0.0978	3	0.113	0.288
Month 1	E12				0		
WORTH 1	Control				0		
Month 2	E12	0.0527	0.1946	0.0140	3	0.0370	0.0639
WOITCH 5	Control	0.0661		0.0170	3	0.0465	0.0763
Month 5	E12				0	•	
	Control				0		
		•	•	•	0	•	•

Table A-30. Acrylamide in Fries from Russet Burbank and E12 at Harvest and After Storage at BinghamCounty, Idaho in 2011

Timing	Variety	Mean (ppb)	P-Value	Standard Deviation	Ζ	Min	Max
Month 0	E12	99	<u><.0001</u>	4.54	3	95.1	104
	Control	315		28.5	3	286	343
Month 3	E12	414	<u><.0001</u>	58.7	3	365	479
	Control	1157	•	80.2	3	1,080	1,240

Table A-31. Proximates, Vitamins, and Minerals in E12 and Control Russet Burbank at Canyon County, Idaho in 2009

Variable	Variety	Mean	P-Value	Standard Deviation	Ν	Min	Max
Protein (%)	E12	1.53	0.4095	0.0554	3	1.47	1.56
Protein (%)	Control	1.67		0.0267	3	1.64	1.68
Fat (%)	E12	0.0900	0.2921	0.0062	3	0.0800	0.0900
Fat (%)	Control	0.0700		0.0056	3	0.0700	0.0800
Ash (%)	E12	0.980	0.7799	0.0352	3	0.940	1.01
Ash (%)	Control	0.950		0.0317	3	0.910	0.970
Crude Fiber (%)	E12	0.440	0.3484	0.0085	3	0.430	0.450
Crude Fiber (%)	Control	0.420		0.0043	3	0.420	0.430
Carbohydrates (%)	E12	20.7	<u>0.0001</u>	0.126	3	20.6	20.8
Carbohydrates (%)	Control	19.4		0.0304	3	19.3	19.4
Calories (kcal/100 g)	E12	89.8	<u>0.0001</u>	0.386	3	89.4	90.2
Calories (kcal/100 g)	Control	84.8		0.184	3	84.6	85.0
Moisture (%)	E12	76.7	<u>0.0005</u>	0.105	3	76.6	76.8
Moisture (%)	Control	78.0		0.0650	3	77.9	78.0
Vitamin B3 (mg/100 g)	E12	1.93	<u>0.0091</u>	0.0695	3	1.85	1.99
Vitamin B3 (mg/100 g)	Control	1.64		0.118	3	1.53	1.77
Vitamin B6 (mg/100 g)	E12	0.170	<u>0.0071</u>	0.0041	3	0.160	0.170
Vitamin B6 (mg/100 g)	Control	0.150		0.0076	3	0.140	0.160
Vitamin C (mg/110 g)	E12	13.2	<u><.0001</u>	0.209	3	13.0	13.4
Vitamin C (mg/110 g)	Control	9.84		0.157	3	9.66	9.95
Copper (ppm)	E12	1.24	0.4238	0.0292	3	1.22	1.27
Copper (ppm)	Control	1.29		0.0304	3	1.26	1.32
Magnesium (ppm)	E12	231	<u>0.0056</u>	5.23	3	226	237
Magnesium (ppm)	Control	203		5.43	3	197	207
Potassium (ppm)	E12	4,021	0.7400	71.5	3	3,966	4,102
Potassium (ppm)	Control	3,895		62.9	3	3,825	3,946

Table A-32. Total Amino Acids in E12 and Control Russet Burbank at Canyon County, Idaho in 2009

Variable	Variety	Mean (ppm)	P- Value ¹	Standard Deviation	Ν	Min	Max
Alanine	E12	511	0.1065	71.4	3	429	563
Alanine	Control	450	•	23.7	3	423	468
Arginine	E12	828	0.7288	68.7	3	780	907
Arginine	Control	877	•	153	3	723	1,029
ASP+ASN	E12	3,039	<u><.0001</u>	156	3	2,869	3,177
ASP+ASN	Control	5,134	•	75.8	3	5,071	5,218
Cystine	E12		•	•	0	•	
Cystine	Control	•	•	•	0	•	•
GLU+GLN	E12	3,538	<u>0.0385</u>	35.6	3	3,517	3,579
GLU+GLN	Control	2,688	•	172	3	2,489	2,788
Glycine	E12	675	0.0040	137	3	568	830
Glycine	Control	1,559	•	178	3	1,422	1,760
Histidine	E12	605	0.4265	46.6	3	557	650
Histidine	Control	577		56.1	3	542	642
Isoleucine	E12	422	0.3582	18.9	3	406	443
Isoleucine	Control	538		79.8	3	467	625
Leucine	E12	988	0.9798	162	3	804	1,110
Leucine	Control	984		171	3	810	1,152
Lysine	E12	1,117	<u>0.0465</u>	106	3	1,031	1,235
Lysine	Control	788	•	47.9	3	743	838
Methionine	E12	570	<u>0.0061</u>	97.0	3	464	654
Methionine	Control	410	•	60.8	3	355	475
Phenylalanine	E12	704	0.2838	29.7	3	676	735
Phenylalanine	Control	614	•	133	3	466	720
Proline	E12	829	0.2133	112	3	704	921
Proline	Control	725	•	52.3	3	672	776
Serine	E12	283	0.6652	23.4	3	265	310
Serine	Control	319	•	48.5	3	275	371
Threonine	E12	504	0.1013	55.4	3	454	563
Threonine	Control	718		70.0	3	672	799
Tryptophan	E12		•		0		
Tryptophan	Control				0	•	
Tyrosine	E12	296	0.1252	26.8	3	266	318
Tyrosine	Control	423		123	3	350	565
Valine	E12	894	0.0768	245	3	612	1,055
Valine	Control	1,065		154	3	905	1,212

Variable	Variety	Mean mg/100 g	P-Value	Standard Deviation	Ν	Min	Max
Glycoalkaloids	E12	4.15	0.2611	0.319	3	3.85	4.48
	Control	3.56		0.203	3	3.33	3.71

Table A-33. Glycoalkaloids in E12 and Control Russet Burbank at Canyon County, Idaho in 2009

Table A-34. Free Amino Acids in Tubers of E12 and Control Russet Burbank at Canyon County, Idah	io in
2009	

Variable	Line	Mean (ppm)	P-Value	Standard Deviation	N	Min	Max
Asparagine	E12	447	<u><.0001</u>	7.08	3	440	454
Asparagine	Control	842		25.9	3	822	871
Aspartic Acid	E12	302	0.8807	10.4	3	293	313
Aspartic Acid	Control	294		17.4	3	280	313
Glutamine	E12	891	0.0552	22.2	3	865	907
Glutamine	Control	612		10.0	3	605	623
Glutamic Acid	E12	458	0.3735	25.3	3	428	474
Glutamic Acid	Control	496		55.4	3	448	556

Table A-35. Russet Burbank and E12 Sugars in Tubers at Harvest and After Storage at Canyon County,Idaho in 2009

Timing	Variety	Mean	P-Value	Standard Deviation	N	Min	Max
		Fru	ctose and G	lucose (%)			
Fresh	E12				0	•	•
	Control				0		
Month 1	E12	0.140	<u><.0001</u>	0.0056	3	0.134	0.144
WONTH 1	Control	0.209		0.0035	3	0.205	0.212
Month 2	E12	0.155	<u>0.0014</u>	0.0075	3	0.149	0.163
WORTH 3	Control	0.215		0.0288	3	0.189	0.246
Month C	E12	0.120	<u>0.0067</u>	0.0028	3	0.117	0.123
wonth 5	Control	0.140		0.0072	3	0.132	0.146
			Sucrose	(%)			
Fresh	E12		•		0	•	•
FIESH	Control				0		
Month 1	E12	0.107	0.2931	0.0038	3	0.103	0.111
WONTH 1	Control	0.117		0.0010	3	0.116	0.118
Month 2	E12	0.0900	0.0804	0.0054	3	0.0845	0.0953
wonth 3	Control	0.103		0.0137	3	0.0878	0.114
Month F	E12	0.101	0.6054	0.0024	3	0.0992	0.103
	Control	0.0965		0.0057	3	0.0905	0.102

Table A-36. Acrylamide in Fries from Russet Burbank and E12 at Harvest and After Storage at CanyonCounty, Idaho in 2009

Timing	Variety	Mean (ppb)	P-Value	Standard Deviation	Ν	Min	Max
Month 2	E12	222	<u><.0001</u>	11.7	3	209	232
	Control	629		10.0	3	619	639
Month C	E12	90.7	<u><.0001</u>	6.03	3	85.0	97.0
Wonth 5	Control	241		16.7	3	231	260
Month 7	E12	192	<u><.0001</u>	26.1	3	165	217
	Control	661		54.6	3	598	693

Table A-37. Proximates, Vitamins, and Minerals in E12 and Control Russet Burbank at Canyon County, Idaho in 2010

Variable	Variety	Mean	P-Value	Standard Deviation	Ν	Min	Max
Protein (%)	E12	2.62	0.7238	0.163	3	2.45	2.78
Protein (%)	Control	2.73		0.185	3	2.60	2.94
Fat (%)	E12	0.0700	0.8288	0.0176	3	0.0500	0.0900
Fat (%)	Control	0.0700		0.0204	2	0.0500	0.0800
Ash (%)	E12	1.25	0.6349	0.0882	3	1.19	1.35
Ash (%)	Control	1.19		0.126	3	1.11	1.34
Crude Fiber (%)	E12	0.510	0.1139	0.0255	3	0.480	0.520
Crude Fiber (%)	Control	0.560		0.0407	3	0.520	0.600
Carbohydrates (%)	E12	17.4	0.7661	0.607	3	16.9	18.1
Carbohydrates (%)	Control	17.2		0.273	3	17.0	17.5
Calories (kcal/100 g)	E12	80.7	0.8314	3.16	3	78.0	84.2
Calories (kcal/100 g)	Control	80.2		0.908	3	79.2	80.9
Moisture (%)	E12	78.7	0.7674	0.714	3	77.9	79.2
Moisture (%)	Control	78.8		0.283	3	78.6	79.1
Vitamin B3 (mg/100 g)	E12	2.02	0.6061	0.0794	3	1.94	2.09
Vitamin B3 (mg/100 g)	Control	2.10		0.128	3	2.01	2.24
Vitamin B6 (mg/100 g)	E12	0.130	0.6779	0.0053	3	0.120	0.130
Vitamin B6 (mg/100 g)	Control	0.130		0.0098	3	0.120	0.140
Vitamin C (mg/110 g)	E12	17.8	0.5567	0.475	3	17.5	18.3
Vitamin C (mg/110 g)	Control	15.1		1.45	3	13.9	16.7
Copper (ppm)	E12	1.07	0.7776	0.137	3	0.970	1.23
Copper (ppm)	Control	1.03		0.206	3	0.820	1.23
Magnesium (ppm)	E12	271	0.7252	31.8	3	246	307
Magnesium (ppm)	Control	264		21.1	3	240	280
Potassium (ppm)	E12	5,872	0.6672	212	3	5,707	6,112
Potassium (ppm)	Control	5,681		584	3	5,223	6,339

Table A-38. Total Amino Acids in E12 and Control Russet Burbank at Canyon County, Idaho in 2010

Variable	Variety	Mean (ppm)	P-Value ¹	Standard Deviation	Ν	Min	Max
Alanine	E12	930	<u>0.0270</u>	117	3	820	1,053
Alanine	Control	1,154		140	3	995	1,258
Arginine	E12	968	0.5039	74.6	3	882	1,016
Arginine	Control	1,039	•	60.0	3	970	1,077
ASP+ASN	E12	2,673	<u><.0001</u>	479	3	2,335	3,221
ASP+ASN	Control	5,122	•	511	3	4,574	5,585
Cystine	E12			•	0		•
Cystine	Control	•		•	0		•
GLU+GLN	E12	5,332	<u><.0001</u>	567	3	4,683	5,733
GLU+GLN	Control	3,444		169	3	3,281	3,619
Glycine	E12	2,055	0.2365	127	3	1,913	2,157
Glycine	Control	2,653		318	3	2,443	3,020
Histidine	E12	221	<u>0.0074</u>	47.0	3	170	263
Histidine	Control	308		62.0	3	237	349
Isoleucine	E12	523	<u>0.0220</u>	62.2	3	455	577
Isoleucine	Control	640		58.6	3	586	702
Leucine	E12	1,094	<u><.0001</u>	132	3	942	1,177
Leucine	Control	1,681		90.9	3	1,609	1,783
Lysine	E12	969	0.6632	58.4	3	904	1,017
Lysine	Control	1,000		53.8	3	943	1,050
Methionine	E12	304	0.1534	1.25	3	302	305
Methionine	Control	348		20.7	3	330	371
Phenylalanine	E12	655	<u>0.0004</u>	45.1	3	605	694
Phenylalanine	Control	889		65.2	3	814	927
Proline	E12	572	<u>0.0499</u>	60.2	3	502	607
Proline	Control	685	•	38.7	3	643	720
Serine	E12	509	0.0561	73.1	3	428	568
Serine	Control	592		90.1	3	509	688
Threonine	E12	349	<u>0.0004</u>	29.7	3	323	381
Threonine	Control	670		147	3	549	834
Tryptophan	E12	•		•	0		•
Tryptophan	Control				0		
Tyrosine	E12	626	0.7891	31.5	3	608	663
Tyrosine	Control	648	•	127	3	505	751
Valine	E12	1,202	0.0008	152	3	1,029	1,317
Valine	Control	1,728		282	3	1,447	2,012

Variable	Variety	Mean mg/100 g	P-Value	Standard Deviation	N	Min	Max
Glycoalkaloids	E12	4.31	0.4422	0.255	3	4.11	4.60
	Control	5.18		1.82	3	3.90	7.26

Table A-39. Glycoalkaloids in E12 and Control Russet Burbank at Canyon County, Idaho in 2010

Table A-40. Free Amino Acids in Tubers of E12 and Control Russet Burbank at Canyon County, Idah	10 in
2010	

Variable	Line	Mean (ppm)	P-Value	Standard Deviation	Ν	Min	Max
Asparagine	E12	740	<u><.0001</u>	196	3	591	962
Asparagine	Control	3,155		88.2	3	3,060	3,234
Aspartic Acid	E12	612	0.6313	86.9	3	523	697
Aspartic Acid	Control	649		40.1	3	605	683
Glutamine	E12	2,122	<u>0.0019</u>	165	3	1,946	2,274
Glutamine	Control	1,433		111	3	1,321	1,543
Glutamic Acid	E12	462	0.1608	97.7	3	384	572
Glutamic Acid	Control	549		23.9	3	527	574

Table A-41. Russet Burbank and E12 Sugars in Tubers at Harvest and After Storage at Canyon County,Idaho in 2010

Timing	Variety	Mean	P-Value	Standard Deviation	N	Min	Max				
	Fructose and Glucose (%)										
Frach	E12				0						
Fresh	Control				0						
Month 1	E12	0.0624	<u>0.0069</u>	0.0064	3	0.0567	0.0692				
	Control	0.0935		0.0125	3	0.0797	0.104				
Month 2	E12	0.188	0.8687	0.0778	3	0.134	0.277				
Wonth 3	Control	0.198	•	0.0144	3	0.183	0.212				
Month C	E12	0.134	0.2471	0.0048	3	0.131	0.140				
IVIONUN 5	Control	0.168		0.0156	3	0.155	0.185				
			Sucrose	(%)							
Frach	E12			•	0						
FIESH	Control	•	•	•	0	•	•				
Month 1	E12	0.177	<u><.0001</u>	0.0269	3	0.146	0.194				
	Control	0.244		0.0055	3	0.237	0.248				
Month 2	E12	0.114	<u><.0001</u>	0.0106	3	0.106	0.126				
wonth 3	Control	0.0643		0.0066	3	0.0602	0.0718				
Month F	E12	0.0962	0.0994	0.0054	2	0.0924	0.100				
	Control	0.0816		0.0041	3	0.0783	0.0862				

Table A-42. Acrylamide in Fries from Russet Burbank and E12 at Harvest and After Storage at CanyonCounty, Idaho in 2010

Timing	Variety	Mean (ppb)	P-Value	Standard Deviation	Ν	Min	Max
Month 0	E12	185	<u>0.0421</u>	16.3	3	172	203
	Control	575		56.2	3	530	638
Month 2	E12	342	<u><.0001</u>	55.1	3	285	395
Wonth 3	Control	559		20.9	3	545	583
Month 6	E12	156	<u>0.0002</u>	10	3	146	166
	Control	254		17.3	3	234	265

Table A-43. Proximates, Vitamins, and Minerals in E12 and Control Russet Burbank at Canyon County, Idaho in 2011

Variable	Variety	Mean	P-Value	Standard Deviation	N	Min	Max
Protein (%)	E12	1.86	0.2612	0.0907	3	1.76	1.94
Protein (%)	Control	1.79		0.0300	3	1.76	1.82
Fat (%)	E12	0.100	0.1139	0	3	0.100	0.100
Fat (%)	Control	0.130		0.0577	3	0.100	0.200
Ash (%)	E12	0.740	0.8895	0.395	2	0.460	1.02
Ash (%)	Control	0.760		0.0847	3	0.670	0.840
Crude Fiber (%)	E12	0.420	0.1143	0.0452	3	0.390	0.470
Crude Fiber (%)	Control	0.470		0.0509	3	0.440	0.530
Carbohydrates (%)	E12	21.9	0.0866	0.493	3	21.3	22.2
Carbohydrates (%)	Control	21.0		0.115	3	20.9	21.1
Calories (kcal/100 g)	E12	95.1	0.1117	1.88	3	92.9	96.3
Calories (kcal/100 g)	Control	92.1		0.569	3	91.6	92.7
Moisture (%)	E12	75.7	0.1919	0.153	3	75.5	75.8
Moisture (%)	Control	76.3	•	0.100	3	76.2	76.4
Vitamin B3 (mg/100 g)	E12	1.89	0.7778	0.0700	3	1.84	1.97
Vitamin B3 (mg/100 g)	Control	1.87		0.0153	3	1.86	1.89
Vitamin B6 (mg/100 g)	E12	0.130	0.0950	0.0015	3	0.130	0.130
Vitamin B6 (mg/100 g)	Control	0.150		0.0257	3	0.130	0.180
Vitamin C (mg/110 g)	E12	30.6	0.8816	1.97	3	29.4	32.9
Vitamin C (mg/110 g)	Control	30.9		1.82	3	29.3	32.9
Copper (ppm)	E12	0.770	0.4507	0.104	3	0.710	0.890
Copper (ppm)	Control	0.710		0.0415	3	0.670	0.750
Magnesium (ppm)	E12	267	0.5748	10.0	3	257	277
Magnesium (ppm)	Control	275		18.5	3	263	296
Potassium (ppm)	E12	4,243	0.1682	178	3	4,050	4,400
Potassium (ppm)	Control	4,487		218	3	4,310	4,730

Variable	Variety	Mean (ppm)	P-Value ¹	Standard Deviation	Ν	Min	Max
Alanine	E12	631	0.0798	19.9	3	615	653
Alanine	Control	571		48.4	3	517	<mark>61</mark> 0
Arginine	E12	918	0.3033	30.8	3	883	941
Arginine	Control	855		27.6	3	836	887
ASP+ASN	E12	2,223	<u><.0001</u>	49.3	3	2,190	2,280
ASP+ASN	Control	4,067		163	3	3,940	4,250
Cystine	E12	185	0.2197	5.69	3	180	191
Cystine	Control	148		27.1	3	118	171
GLU+GLN	E12	3,960	<u><.0001</u>	72.1	3	3,900	<mark>4,</mark> 040
GLU+GLN	Control	2,707		40.4	3	2,670	2,750
Glycine	E12	553	0.3706	14.2	3	544	569
Glycine	Control	533		42.1	3	489	573
Histidine	E12	296	0.8242	10	3	286	306
Histidine	Control	293		18.0	3	281	314
Isoleucine	E12	644	0.6001	24.2	3	622	670
Isoleucine	Control	629		47.6	3	583	<mark>678</mark>
Leucine	E12	1,006	0.3524	22.1	3	987	1,030
Leucine	Control	965		63.2	3	896	1,020
Lysine	E12	918	0.8001	34.8	3	893	958
Lysine	Control	910		37.2	3	875	949
Methionine	E12	364	0.1964	5.77	3	357	367
Methionine	Control	348		18.1	3	331	367
Phenylalanine	E12	<mark>681</mark>	0.9860	56.9	3	618	728
Phenylalanine	Control	<mark>681</mark>		54.7	3	<mark>637</mark>	742
Proline	E12	575	0.0692	11.7	3	566	<mark>588</mark>
Proline	Control	517		33.5	3	484	551
Serine	E12	671	0.2296	20.2	3	649	<mark>689</mark>
Serine	Control	647		27.8	3	<mark>617</mark>	672
Threonine	E12	707	0.1409	11.8	3	700	721
Threonine	Control	667		44.7	3	618	705
Tryptophan	E12	176	0.2812	20.8	3	163	200
Tryptophan	Control	186		6.08	3	182	193
Tyrosine	E12	640	0.0126	25.7	3	625	670
Tyrosine	Control	564		44.5	3	520	609
Valine	E12	972	0.5251	18.6	3	959	993
Valine	Control	953		59.0	3	909	1,020

Table A-44. Total Amino Acids in E12 and Control Russet Burbank at Canyon County, Idaho in 2011

Variable	Variety	Mean mg/100 g	P-Value	Standard Deviation	Ν	Min	Max
Glycoalkaloids	E12	6.41	<u>0.0005</u>	0.473	3	6.07	6.95
	Control	9.50		1.51	3	8.58	11.2

Table A-45. Glycoalkaloids in E12 and Control Russet Burbank at Canyon County, Idaho in 2011

Table A-46. Free Amino Acids in Tubers of E12 and Control Russet Burbank at Canyon County, Idal	ho in
2011	

Variable	Line	Mean (ppm)	P-Value	Standard Deviation	N	Min	Max
Asparagine	E12	706	<u><.0001</u>	27.4	3	690	738
Asparagine	Control	2,640	•	108	3	2,550	2,760
Aspartic Acid	E12	396	<u>0.0168</u>	7.09	3	388	402
Aspartic Acid	Control	359	•	21.0	3	338	380
Glutamine	E12	1,973	<u><.0001</u>	15.3	3	1,960	1,990
Glutamine	Control	969		79.4	3	916	1,060
Glutamic Acid	E12	633	0.1149	24.2	3	607	655
Glutamic Acid	Control	591		41.7	3	543	618

Table A-47. Russet Burbank and E12 Sugars in Tubers at Harvest and After Storage at Canyon County,Idaho in 2011

Timing	Variety	Mean	P-Value	Standard Deviation	N	Min	Max			
	Fructose and Glucose (%)									
Freeh	E12	0.085	0.3413	0.027	3	0.0685	0.116			
Fresh	Control	0.072	•	0.021	3	0.0534	0.0944			
Month 1	E12				0					
NOULU T	Control				0					
Month 2	E12				0					
WIONTH 3	Control				0					
Month F	E12				0					
WIONTEN 2	Control				0					
			Sucrose	(%)						
Fresh	E12	0.276	0.0530	0.020	3	0.264	0.299			
Fresh	Control	0.222		0.065	3	0.149	0.275			
Month 1	E12	•	•	•	0	•	•			
	Control	•	•	•	0	•	•			
Month 2	E12				0		•			
ivionth 3	Control				0					
Month E	E12				0					
ivionth 5	Control				0					

Table A-48. Acrylamide in Fries from Russet Burbank and E12 at Harvest and After Storage at CanyonCounty, Idaho in 2011

Timing	Variety	Mean (ppb)	P-Value	Standard Deviation	Ν	Min	Max
Month 0	E12	217	<u><.0001</u>	18.0	3	198	234
	Control	529		23.1	3	515	556
Month 3	E12	193	<u><.0001</u>	26.2	3	169	221
	Control	563		60.0	3	502	622

Table A-49. Proximates, Vitamins, and Minerals in E12 and Control Russet Burbank at Larimore County, North Dakota in 2010

Variable	Variety	Mean	P-Value	Standard Deviation	Ν	Min	Max
Protein (%)	E12	2.80	0.7488	0.148	3	2.71	2.97
Protein (%)	Control	2.72		0.251	3	2.57	3.01
Fat (%)	E12	0.0900	0.9492	0.0049	3	0.0900	0.0900
Fat (%)	Control	0.0900		0.0317	3	0.0600	0.120
Ash (%)	E12	1.32	0.1069	0.121	3	1.23	1.46
Ash (%)	Control	1.17		0.130	3	1.03	1.29
Crude Fiber (%)	E12	0.680	0.1986	0.0164	3	0.670	0.700
Crude Fiber (%)	Control	0.620		0.0199	3	0.590	0.630
Carbohydrates (%)	E12	18.9	0.5466	0.799	3	18.0	19.5
Carbohydrates (%)	Control	19.4		1.16	3	18.2	20.5
Calories (kcal/100 g)	E12	87.8	0.5791	3.62	3	83.8	90.8
Calories (kcal/100 g)	Control	89.3		3.94	3	85.4	93.3
Moisture (%)	E12	76.8	0.7396	0.975	3	76.0	77.9
Moisture (%)	Control	76.6		1.03	3	75.5	77.5
Vitamin Vitamin B3 (mg/100 g)	E12	2.28	0.5665	0.0440	3	2.23	2.32
Vitamin Vitamin B3 (mg/100 g)	Control	2.13		0.0681	3	2.08	2.20
Vitamin B6 (mg/100 g)	E12	0.210	0.1958	0.0055	3	0.200	0.210
Vitamin B6 (mg/100 g)	Control	0.190		0.0133	3	0.180	0.200
Vitamin C (mg/110 g)	E12	16.6	<u>0.0003</u>	2.91	3	14.2	19.8
Vitamin C (mg/110 g)	Control	10.3		1.33	3	8.88	11.5
Copper (ppm)	E12	0.630	0.6195	0.0835	3	0.540	0.710
Copper (ppm)	Control	0.680		0.0963	3	0.620	0.790
Magnesium (ppm)	E12	344	0.4377	53.5	3	307	405
Magnesium (ppm)	Control	323		31.6	3	288	350
Potassium (ppm)	E12	5,802	0.6508	428	3	5,421	6,265
Potassium (ppm)	Control	5,586		659	3	4,825	5,966

Table A-50. Total Amino Acids in E12 and Control Russet Burbank at Larimore County, North Dakota in2010

Variable	Variety	Mean (ppm)	P-Value ¹	Standard Deviation	Ν	Min	Max
Alanine	E12	815	0.7236	12.2	3	801	824
Alanine	Control	732		95.2	3	672	842
Arginine	E12	494	0.6650	4.02	3	490	498
Arginine	Control	583		43.2	3	534	613
ASP+ASN	E12	2,338	0.3339	61.3	3	2,291	2,408
ASP+ASN	Control	4,852	•	507	3	4,378	5,387
Cystine	E12				0		
Cystine	Control	•			0		
GLU+GLN	E12	4,132	0.1854	192	3	3,918	4,288
GLU+GLN	Control	2,633	•	400	3	2,354	3,092
Glycine	E12	1,620	0.8841	181	3	1,475	1,823
Glycine	Control	1,697	•	293	3	1,396	1,981
Histidine	E12	404	0.2688	19.0	3	388	425
Histidine	Control	289	•	167	3	100	415
Isoleucine	E12	598	0.8121	27.2	3	575	628
Isoleucine	Control	642		86.2	3	589	741
Leucine	E12	1,234	0.9799	52.6	3	1,192	1,293
Leucine	Control	1,239		78.6	3	1,152	1,304
Lysine	E12	956	0.7601	35.5	3	921	992
Lysine	Control	694		70.5	3	646	775
Methionine	E12	240	0.4906	9.36	3	232	250
Methionine	Control	217		22.3	3	197	241
Phenylalanine	E12	544	0.7345	4.06	3	541	549
Phenylalanine	Control	577		55.2	3	536	639
Proline	E12	657	0.5218	18.3	3	638	675
Proline	Control	582		77.0	3	521	669
Serine	E12	258	0.2432	33.4	3	220	281
Serine	Control	398		160	3	214	499
Threonine	E12	314	0.5381	20.1	3	299	337
Threonine	Control	378		81.9	3	313	470
Tryptophan	E12				0		
Tryptophan	Control	•			0		
Tyrosine	E12	432	0.9137	4.13	3	428	436
Tyrosine	Control	469		74.4	3	386	529
Valine	E12	952	0.5070	90.1	3	865	1,045
Valine	Control	1,124	•	161	3	962	1,285

Table A-51. Glycoalkaloids in E12 and Control Russet Burbank at Larimore County, North Dakota in2010

Variable	Variety	Mean mg/100 g	P-Value	Standard Deviation	Ν	Min	Max
Glycoalkaloids	E12	7.66	<u>0.0188</u>	2.54	3	5.69	10.5
	Control	15.2		3.49	3	11.6	18.6

Table A-52. Free Amino Acids in Tubers of E12 and Control Russet Burbank at Larimore County, North Dakota in 2010

Variable	Line	Mean (ppm)	P-Value	Standard Deviation	N	Min	Max
Asparagine	E12	463	<u><.0001</u>	34.9	3	425	493
Asparagine	Control	2,223		68.8	3	2,164	2,298
Aspartic Acid	E12	320	0.9989	9.90	3	314	332
Aspartic Acid	Control	321		23.0	3	303	347
Glutamine	E12	1,656	0.1094	94.9	3	1,595	1,765
Glutamine	Control	983		160	3	809	1,124
Glutamic Acid	E12	232	0.8952	4.50	3	227	236
Glutamic Acid	Control	251		28.1	3	221	277

Table A-53. Russet Burbank and E12 Sugars in Tubers at Harvest and After Storage at Larimore County,North Dakota in 2010

Timing	Variety	Mean	P-Value	Standard Deviation	N	Min	Max			
Fructose and Glucose (%)										
Fuenda	E12				0					
Fresh	Control				0					
Month 1	E12	0.229	<u><.0001</u>	0.0262	3	0.200	0.251			
WONTH 1	Control	0.355		0.0431	3	0.308	0.393			
Manth 2	E12	0.418	0.4079		1	0.418	0.418			
Wonth 3	Control	0.519	•	0.134	3	0.366	0.617			
Manth F	E12	0.489	0.4385	•	1	0.489	0.489			
wonth 5	Control	0.624		0.0092	2	0.617	0.630			
			Sucrose	(%)						
Frach	E12				0					
FIESH	Control	•			0		•			
Month 1	E12	0.191	0.5311	0.0377	3	0.150	0.223			
	Control	0.206		0.0137	3	0.192	0.219			
Month 2	E12	0.0568	0.5921		1	0.0568	0.0568			
wonth 3	Control	0.0777		0.0375	3	0.0542	0.121			
	E12	0.0507	0.6828		1	0.0507	0.0507			
	Control	0.0447		0.0151	3	0.0350	0.0621			

Table A-54. Acrylamide in Fries from Russet Burbank and E12 at Harvest and After Storage at LarimoreCounty, North Dakota in 2010

Timing	Variety	Mean (ppb)	P-Value	Standard Deviation	Ν	Min	Max
Month 0	E12	145	0.0591	15	3	128	157
	Control	539		135	3	459	694
Month 2	E12	315	<u><.0001</u>	50.7	3	257	351
wonth 3	Control	750		57	3	684	787
Month 6	E12	263	<u>0.0067</u>	15.6	3	245	272
	Control	327		46.7	3	286	378

Table A-55. Proximates, Vitamins, and Minerals in E12 and Control Russet Burbank at Larimore County, North Dakota in 2011

Variable	Variety	Mean	P-Value	Standard Deviation	Ν	Min	Max
Protein (%)	E12	1.86	0.1030	0.0764	3	1.78	1.93
Protein (%)	Control	1.72		0.0862	3	1.64	1.81
Fat (%)	E12	0.130	1.0000	0.0577	3	0.100	0.200
Fat (%)	Control	0.130		0.0577	3	0.100	0.200
Ash (%)	E12	0.420	0.1440	0.364	3	0	0.640
Ash (%)	Control	0.900		0.973	3	0.150	2.00
Crude Fiber (%)	E12	0.380	0.9127	0.0303	3	0.350	0.410
Crude Fiber (%)	Control	0.380		0.0291	3	0.350	0.410
Carbohydrates (%)	E12	19.5	0.7363	0.321	3	19.3	19.9
Carbohydrates (%)	Control	19.2		1.37	3	17.7	20.4
Calories (kcal/100 g)	E12	86.8	0.6102	1.11	3	85.6	87.8
Calories (kcal/100 g)	Control	84.8		5.56	3	78.5	89.0
Moisture (%)	E12	78.0	0.9732	0.611	3	77.5	78.7
Moisture (%)	Control	78.1		2.06	3	76.5	80.4
Vitamin B3 (mg/100 g)	E12	1.47	0.9499	0.0404	3	1.43	1.51
Vitamin B3 (mg/100 g)	Control	1.47		0.0306	3	1.44	1.50
Vitamin B6 (mg/100 g)	E12	0.120	0.1884	0.0069	3	0.110	0.130
Vitamin B6 (mg/100 g)	Control	0.110		0.0050	3	0.110	0.120
Vitamin C (mg/110 g)	E12	24.2	0.2853	1.91	3	22.0	25.6
Vitamin C (mg/110 g)	Control	21.6		1.83	3	19.6	23.2
Copper (ppm)	E12	1.11	<u>0.0210</u>	0.0950	3	1.01	1.20
Copper (ppm)	Control	0.660		0.214	3	0.500	0.900
Magnesium (ppm)	E12	210	0.1061	9.50	3	201	220
Magnesium (ppm)	Control	192		23.6	3	165	210
Potassium (ppm)	E12	3,690	0.5968	201	3	3,550	3,920
Potassium (ppm)	Control	3,533		437	3	3,040	3,870

Table A-56. Total Amino Acids in E12 and Control Russet Burbank at Larimore County, North Dakota in2011

Variable	Variety	Mean (ppm)	P- Value ¹	Standard Deviation	Ν	Min	Max
Alanine	E12	620	<u>0.0001</u>	18.0	3	602	638
Alanine	Control	452		112	3	323	526
Arginine	E12	889	<u>0.0183</u>	21.7	3	866	909
Arginine	Control	687	•	156	3	508	794
ASP+ASN	E12	2,040	0.0562	78.1	3	1,950	2,090
ASP+ASN	Control	2,867	•	<mark>698</mark>	3	2,090	3,440
Cystine	E12	238	0.0926	6.24	3	231	243
Cystine	Control	199		33.8	3	161	225
GLU+GLN	E12	4,203	<u><.0001</u>	263	3	3,900	4,360
GLU+GLN	Control	2,413		509	3	1,840	2,810
Glycine	E12	537	<u>0.0024</u>	9.61	3	527	546
Glycine	Control	421		99.2	3	307	484
Histidine	E12	281	<u>0.0146</u>	2.00	3	279	283
Histidine	Control	233		41.1	3	186	262
Isoleucine	E12	646	0.0038	29.4	3	612	666
Isoleucine	Control	509		119	3	372	590
Leucine	E12	955	<u>0.0024</u>	18.5	3	937	974
Leucine	Control	739		181	3	530	845
Lysine	E12	902	<u>0.0164</u>	44.5	3	851	930
Lysine	Control	737		154	3	560	845
Methionine	E12	432	0.0006	21.2	3	408	447
Methionine	Control	290		92.1	3	200	384
Phenylalanine	E12	751	<u>0.0008</u>	18.7	3	730	765
Phenylalanine	Control	563		127	3	417	653
Proline	E12	528	<u>0.0059</u>	69.9	3	487	609
Proline	Control	400		69.0	3	321	446
Serine	E12	712	<u>0.0016</u>	9.87	3	701	719
Serine	Control	542		132	3	390	625
Threonine	E12	672	<u>0.0023</u>	20.2	3	659	695
Threonine	Control	524		127	3	381	623
Tryptophan	E12	195	0.5960	12.5	3	181	204
Tryptophan	Control	190		2.31	3	187	191
Tyrosine	E12	668	0.0003	27.2	3	639	693
Tyrosine	Control	495		121	3	358	589
Valine	E12	1,034	0.0003	39.3	3	992	1,070
Valine	Control	775	•	183	3	564	894

Table A-57. Glycoalkaloids in E12 and Control Russet Burbank at Larimore County, North Dakota in2011

Variable	Variety	Mean mg/100 g	P-Value	Standard Deviation	Ν	Min	Max
Glycoalkaloids	E12	6.94	0.8085	1.08	3	5.72	7.76
	Control	6.58		1.31	3	5.25	7.86

Table A-58. Free Amino Acids in Tubers of E12 and Control Russet Burbank at Larimore County, North Dakota in 2011

Variable	Line	Mean (ppm)	P-Value	Standard Deviation	N	Min	Max
Asparagine	E12	560	<u><.0001</u>	63.5	3	496	623
Asparagine	Control	1,933		194	3	1,710	2,060
Aspartic Acid	E12	310	0.6954	4.36	3	307	315
Aspartic Acid	Control	319		22.7	3	300	344
Glutamine	E12	1,747	<u><.0001</u>	163	3	1,570	1,890
Glutamine	Control	955		166	3	789	1,120
Glutamic Acid	E12	385	0.2389	30.4	3	351	409
Glutamic Acid	Control	331		38.0	3	302	374

Table A-59. Russet Burbank and E12 Sugars in Tubers at Harvest and After Storage at Larimore County,North Dakota in 2011

Timing	Variety	Mean	P-Value	Standard Deviation	N	Min	Max			
Fructose and Glucose (%)										
Freeb	E12	0.183	<u>0.0188</u>	0.0517	3	0.130	0.233			
Fresh	Control	0.261		0.0733	3	0.195	0.340			
Month 1	E12	•			0					
	Control				0					
Month 2	E12				0					
WORTH 3	Control				0					
Month F	E12	•			0					
	Control	•			0					
			Sucrose	(%)						
Frach	E12	0.222	<u>0.0200</u>	0.0676	3	0.153	0.288			
FIESH	Control	0.156		0.0078	2	0.150	0.161			
Month 1	E12	•			0					
	Control	•			0					
Month 2	E12	•			0					
	Control	•			0					
Month F	E12				0					
	Control				0					

Table A-60. Acrylamide in Fries from Russet Burbank and E12 at Harvest and After Storage at LarimoreCounty, North Dakota in 2011

Timing	Variety	Mean (ppb)	P-Value	Standard Deviation	N	Min	Max
	E12	261	<u><.0001</u>	35.6	3	227	298
wonth 0	Control	720	•	44.9	3	683	770
Month 3	E12	466	<u><.0001</u>	57.5	3	409	524
	Control	1,128		121	3	995	1,230

Table A-61. Proximates, Vitamins, and Minerals in E12 and Control Russet Burbank at Montcalm County, Michigan in 2009

Variable	Variety	Mean	P-Value	Standard Deviation	Ν	Min	Max
Protein (%)	E12	2.25	0.0849	0.0191	3	2.23	2.26
Protein (%)	Control	2.28		0.0294	3	2.25	2.31
Fat (%)	E12	0.0800	0.0578	0.0217	3	0.0600	0.110
Fat (%)	Control	0.110		0.0110	3	0.100	0.120
Ash (%)	E12	1.02	0.8206	0.0395	3	0.980	1.06
Ash (%)	Control	1.01		0.0175	3	1	1.03
Crude Fiber (%)	E12	0.430	0.0670	0.0114	3	0.420	0.440
Crude Fiber (%)	Control	0.470		0.0077	3	0.470	0.480
Carbohydrates (%)	E12	18.1	<u><.0001</u>	0.0295	3	18.1	18.1
Carbohydrates (%)	Control	19.2		0.0108	3	19.2	19.3
Calories (kcal/100 g)	E12	82.2	<u><.0001</u>	0.345	3	81.9	82.6
Calories (kcal/100 g)	Control	87.1		0.138	3	86.9	87.2
Moisture (%)	E12	78.5	<u><.0001</u>	0.0987	3	78.4	78.6
Moisture (%)	Control	77.4	•	0.0379	3	77.3	77.4
Vitamin B3 (mg/100 g)	E12	1.84	<u>0.0204</u>	0.0373	3	1.80	1.88
Vitamin B3 (mg/100 g)	Control	1.69		0.117	3	1.59	1.82
Vitamin B6 (mg/100 g)	E12	0.150	<u>0.0002</u>	0.0065	3	0.140	0.150
Vitamin B6 (mg/100 g)	Control	0.170		0.0028	3	0.170	0.170
Vitamin C (mg/110 g)	E12	13.3	0.2581	0.181	3	13.0	13.4
Vitamin C (mg/110 g)	Control	13.0		0.378	3	12.6	13.4
Copper (ppm)	E12	1	0.1400	0.0172	3	0.990	1.02
Copper (ppm)	Control	1.06		0.0432	3	1.01	1.09
Magnesium (ppm)	E12	190	0.6785	4.14	3	188	195
Magnesium (ppm)	Control	189		2.38	3	187	191
Potassium (ppm)	E12	4,013	0.1014	125	3	3,875	4,120
Potassium (ppm)	Control	4,114		52.7	3	4,068	4,171

Table A-62. Total Amino Acids in E12 and Control Russet Burbank at Montcalm County, Michigan in2009

Variable	Variety	Mean (ppm)	P-Value ¹	Standard Deviation	N	Min	Max
Alanine	E12	681	0.7209	70.7	3	618	758
Alanine	Control	654		48.0	3	609	705
Arginine	E12	1,744	<u>0.0221</u>	271	3	1,559	2,055
Arginine	Control	1,276		157	3	1,131	1,443
ASP+ASN	E12	4,590	<u><.0001</u>	102	3	4,512	4,705
ASP+ASN	Control	7,956		275	3	7,678	8,228
Cystine	E12	•			0		
Cystine	Control	•			0		
GLU+GLN	E12	5,366	<u><.0001</u>	121	3	5,228	5,452
GLU+GLN	Control	3,777		190	3	3,605	3,982
Glycine	E12	2,187	<u>0.0498</u>	204	3	2,048	2,421
Glycine	Control	1,673		352	3	1,467	2,079
Histidine	E12	911	<u>0.0052</u>	107	3	790	991
Histidine	Control	732		28.2	3	705	762
Isoleucine	E12	1,072	<u>0.0155</u>	177	3	919	1,266
Isoleucine	Control	705		181	3	573	912
Leucine	E12	1,786	<u>0.0189</u>	243	3	1,537	2,024
Leucine	Control	1,394		107	3	1,283	1,498
Lysine	E12	1,501	<u>0.0437</u>	241	3	1,235	1,705
Lysine	Control	1,176	•	111	3	1,099	1,304
Methionine	E12	710	0.0727	139	3	556	826
Methionine	Control	527		25.7	3	506	555
Phenylalanine	E12	1,129	0.0815	116	3	1,014	1,247
Phenylalanine	Control	991		69.0	3	916	1,051
Proline	E12	895	0.5202	26.9	3	872	925
Proline	Control	857		73.0	3	784	930
Serine	E12	573	0.6295	130	3	425	671
Serine	Control	638	•	108	3	514	707
Threonine	E12	1,240	0.5177	167	3	1,048	1,347
Threonine	Control	1,152	•	180	3	970	1,331
Tryptophan	E12	•	•	•	0		
Tryptophan	Control	•	•	•	0		
Tyrosine	E12	787	0.0613	66.1	3	748	863
Tyrosine	Control	649		126	3	555	792
Valine	E12	1,212	0.1247	285	3	955	1,519
Valine	Control	959	•	92.3	3	857	1,037

Variable	Variety	Mean mg/100 g	P-Value	Standard Deviation	Ν	Min	Max
Glycoalkaloids	E12	8.11	0.3624	0.283	3	7.93	8.44
	Control	8.42		0.249	3	8.13	8.56

Table A-63. Glycoalkaloids in E12 and Control Russet Burbank at Montcalm County, Michigan in 2009

Table A-64. Free Amino Acids in Tubers of E12 and Control Russet Burbank at Montcalm County, Michigan in 2009

Variable	Line	Mean (ppm)	P-Value	Standard Deviation	N	Min	Max
Asparagine	E12	492	<u><.0001</u>	12.5	3	484	506
Asparagine	Control	1,252		10.4	3	1,240	1,261
Aspartic Acid	E12	506	0.0997	11.4	3	495	518
Aspartic Acid	Control	430		11.3	3	417	437
Glutamine	E12	1,298	<u><.0001</u>	29.4	3	1,270	1,329
Glutamine	Control	777		18.9	3	759	797
Glutamic Acid	E12	399	0.6549	29.2	3	373	430
Glutamic Acid	Control	385		7.07	3	377	391

Table A-65. Russet Burbank and E12 Sugars in Tubers at Harvest and After Storage at MontcalmCounty, Michigan in 2009

Timing	Variety	Mean	P-Value	Standard Deviation	N	Min	Max		
Fructose and Glucose (%)									
Fuerb	E12				0		•		
FIESH	Control	•	•		0	•	•		
Month 1	E12	0.0736	<u>0.0197</u>	0.0134	3	0.0595	0.0863		
	Control	0.100		0.0183	3	0.0892	0.122		
Manth 2	E12	0.0960	<u>0.0014</u>	0.0133	3	0.0810	0.106		
Wonth 3	Control	0.123	•	0.0055	3	0.117	0.127		
Month F	E12	0.0893	<u><.0001</u>	0.0038	3	0.0851	0.0924		
	Control	0.131		0.0067	3	0.125	0.138		
			Sucrose	(%)					
Fuenda	E12	•	•		0	•	•		
FIESH	Control	•	•		0	•	•		
Month 1	E12	0.0809	<u>0.0094</u>	0.0072	3	0.0754	0.0891		
Wonth 1	Control	0.114	•	0.0162	3	0.104	0.132		
Month 3	E12	0.0573	<u>0.0016</u>	0.0099	3	0.0458	0.0636		
	Control	0.0752		0.0033	3	0.0723	0.0788		
Month 5	E12	0.125	0.4345	0.0143	3	0.113	0.141		
	Control	0.122		0.0078	3	0.113	0.127		

Table A-66. Acrylamide in Fries from Russet Burbank and E12 at Harvest and After Storage atMontcalm County, Michigan in 2009

Timing	Variety	Mean (ppb)	P-Value	Standard Deviation	Ν	Min	Max
Month 2	E12	247	<u><.0001</u>	4.58	3	242	251
	Control	912		34.9	3	881	950
Month 5	E12	70	<u><.0001</u>	3.61	3	67.0	74.0
	Control	215		14.4	3	207	232
Month 7	E12	•			0		•
	Control				0		•

REFERENCES

Amrein, T.M, Bachmann, S., Noti, A., Biedermann, M., Barbosa, M.F., Biedermann-Brem, S., Grob, K., Keiser, A., Realini, P., Escher, F., and Amado, R. (2003). Potential of Acrylamide Formation, Sugars, and Free Asparagine in Potatoes: A Comparison of Cultivars and Farming Systems. Journal of Agricultural and Food Chemistry *51*, 5556-5560.

AOAC (2005). Official Methods of Analysis of AOAC International, 18th Ed. Association of Official Agricultural Chemists International, Gaithersburg, MD, U.S.A.

AOAC (2006). Official Methods of Analysis of the AOAC International, 19th Edition, Method 997.13. Association of Official Agricultural Chemists International, Gaithersburg, MD, U.S.A.

Atkin, L., Schultz, A.S., Williams, W.L., and Frey, C.N. (1943). Yeast Micro-Biological Methods for Determination of Vitamins. Industrial and Engineering Chemistry. Analytical Edition, *15*, 141-144.

Barkholt, V., and Jensen, A.L. (1989). Amino Acid Analysis: Determination of Cystine plus Half-Cystine in Proteins after Hydrochloric Acid Hydrolysis with a Disulfide Compound as Additive. Analytical Biochemistry *177*, 318-322.

Davies, A.M.C. (1977). The Free Amino Acids of Tubers of Potato Varieties Grown in England and Ireland. Potato Research *20*, 9-21.

FDA. (2003). United States Food and Drug Administration, Center for Food Safety and Applied Nutrition of Plant & Dairy Foods and Beverages. Detection and Quantification of Acrylamide in Foods. Accessed Online: May, 2011.

Henderson, J.W., Ricker, R.D., Bidlingmeyer, B.A., and Woodward, C. (2000). Rapid, Accurate, Sensitive, and Reproducible HPLC Analysis of Amino Acids, Amino Acid Analysis using Zorbax Eclipse-AAA Columns and the Agilent 1100 HPLC. Agilent Publication.

Horton, D.E., and Anderson, J.L. (1992). Potato Production in the Context of the World and Farm Economy, in The Potato Crop: The Scientific Basis for Improvement (Ed. Harris PM), Chapman and Hall, London, pp. 803.

Kozukue, N., Yoon, K.S., Byun, G.I., Misoo, S., Levin, C.E., and Friedman, M. (2008) Distribution of Glycoalkaloids in Potato Tubers of 59 Accessions of Two Wild and Five Cultivated *Solanum* species. Journal of Agricultural and Food Chemistry *56*, 11920-11928.

Lilla, Z., Sullivan, D., Ellefson, W., Welton, K., and Crowley, R. (2005). Determination of "Net Carbohydrates" using High-performance Anion Exchange Chromatography. Journal of AOAC International *88*, 714-719.

Lisinska, G., and Leszczynski, W. (1989). Potato Tubers as a Raw Material for Processing and Nutrition, in Potato Science and Technology, Elsevier Applied Science, London, pp 11-128.

Miedel, M.C., Hulmes, J.D., and Pan, Y.C.E. (1989). The use of Fluorescamine as a Detection Reagent in Protein Microcharacterization. Journal of Biochemical and Biophysical Methods *18*, 37-52.

OECD. (2002). Consensus Document on Compositional Considerations for New Varieties of Potatoes: Key Food and Feed Nutrients, Anti-Nutrients, and Toxicants.

Purcell, A., Swaisgood, H.E., and Pope, D.T., Jr. (1972). Protein and Amino Acid Content of Sweetpotato Cultivars. American Society of Horticultural Science *97*, 30.

Rogan, G.J., Bookout, J.T., Duncan, D.R., Fuchs, R.L., Lavrik, P.B., Love, S.L., Mueth, M., Olson, T., Owens, E.D., Raymond, P.J., and Zalewski, J. (2000). Compositional Analysis of Tubers from Insect and Virus Resistant Potato Plants. Journal of Agricultural and Food Chemistry *48*, 5936-5945.

Schuster, R. (1988). Determination of Amino Acids in Biological, Pharmaceutical, Plant and Food Samples by Automated Precolumn Derivitization and HPLC. Journal of Chromatography *431*, 271-284.

Shakya, R., and Navarre, D.A. (2006). Rapid Screening of Ascorbic Acid, Glycoalkaloids and Phenolics in Potato using High-performance Liquid Chromatography. Journal of Agricultural and Food Chemistry *54*, 5253-5260.

Shepherd, L.V.T., Bradshaw, J.E., Dale, M.F.B., McNicol, J.W., Pont, S.D.A., Mottram, D.S., and Davies, H.V. (2010). Variation in Acrylamide Producing Potential in Potato: Segregation of the Trait in a Breeding Population. Food Chemistry *123*, 568-573.

Smith, D.B., Roddick, J.G., and Jones, J.L. (1996). Potato Glycoalkaloids: Some Unanswered Questions. Trends in Food Science and Technology 7, 126-131.

Talburt, W.F., and Smith, O. (1987). Potato Processing, Van Nostrand Reinhold, New York.

Talley, E.A., Toma, R.B., and Orr, P.H. (1984). Amino Acid Composition of Freshly Harvested and Stored Potatoes. American Potato Journal *61*, 267-279.

USDA. (1973). United States Department of Agriculture, Energy Value of Foods. Agricultural Handbook, *74*, 2-11.

USDA. (1975). United States Department of Agriculture, Composition of Foods Agricultural Handbook. *8*, 159-160.

Vardeman, S.B. (1992). What about the Other Intervals? The American Statistician 46, 193-197.

Vivanti, V., Finotti, E., and Friedman, M. (2006). Level of Acrylamide Precursors Asparagine, Fructose, Glucose, and Sucrose in Potatoes Sold at Retail in Italy and in the United States. Journal of Food Science 71(2), C81-C85.

Zhu, X., Richael, C., Chamberlain, P., Busse, J.S., Bussan, A.J., Jiang, J., Paul, C., and Bethke, P.C. (2014). Vacuolar Invertase Gene Silencing in Potato (*Solanum tuberosum* L) Improves Processing Quality by Decreasing the Frequency of Sugar-End Defects. PLOS ONE, <u>www.plosone.org</u>, April 2014, Volume 9, Issue 4, e93381.

<u>STUDY TITLE</u> Stability of the DNA Insert in Russet Burbank E12

AUTHORS

REPORT DATE 12/10/2015

PERFORMING LABORATORIES SPS Regulatory Lab

STUDY NUMBER

15-64-SPS-MOL

CERTIFICATION PAGE

This report is an accurate and complete representation of the study activities.

12/9/15 Date

Associate Regulatory Scientist

12/9/15 Date

Senior Regulatory Science Manager

TABLE OF CONTENTS

ABSTRACT	4
NTRODUCTION	5
STUDY OBJECTIVES	5
STUDY DATES	5
(EY STUDY PERSONNEL	5
MATERIALS AND METHODS	6
RESULTS	8
Insert Stability in E12	8
CONCLUSION1	.1

ABSTRACT

The Russet Burbank potato variety was transformed with the plasmid pSIM1278 to produce event E12, which contains a single, intact insert. Southern blot analysis was conducted to verify the stability of the DNA insert in E12. Using probes that hybridize to genetic elements within the T-DNA, Southern blot analysis revealed consistent banding patterns demonstrating that the insert in E12 has been maintained across clonal cycles. These findings confirm the stability of the insert in event E12.

INTRODUCTION

Commercial potatoes are clonally propagated to obtain genetically identical clonal progeny. Since the clonal progeny do not undergo meiotic recombination, this would make them genetically and phenotypically stable. Nonetheless, stability of the insert in E12 was assessed using Southern blot analyses of genomic DNA isolated from potato plants across clonal cycles.

The Russet Burbank potato variety was transformed with the plasmid pSIM1278 to produce event E12. Event E12 contains a single insert from the plasmid pSIM1278. In this study, the genetic stability of the pSIM1278 insert was assessed by Southern blot analysis.

STUDY OBJECTIVES

The objective of this study is to confirm that E12 retains a stable genetic insert across clonal cycles.

STUDY DATES

01/2008 - 05/2015

KEY STUDY PERSONNEL

MATERIALS AND METHODS

Plant Materials

E12 and non-transformed Russet Burbank (WT) G0 plants were grown in Sunshine mix-1 (www.sungro.com) in two-gallon pots in a greenhouse controlled for temperature (18 °C minimum/27 °C maximum) and light (16-h photoperiod with an intensity of about 1,500 μ mol/m2/s). G0 leaf tissue was sampled after one to two months of growth and stored at -80 °C. Sprouted mini-tubers (G0) were planted to produce G1 plants. G1 plants were grown until maturity to produce G1 tubers that were planted to produce G2 plants. This process was repeated to obtain G3 plants. Tubers were collected from G3 plants.

DNA Isolation

DNA was isolated from G0 leaf tissue and G3 tuber tissue. DNA from leaf and tuber tissue was extracted using the same protocol. A 1.0 g sample collected was ground into a fine powder using a mortar and pestle under liquid nitrogen. The ground tissue was transferred to a pre-cooled 15 mL conical tube with a pre-cooled spatula and stored at -80 °C. Tissue was thoroughly mixed with 10 mL extraction buffer (0.35 M sorbitol, 0.1 M Tris-HCl, pH 8.0, 0.05 M EDTA) and the suspension was centrifuged at 3,000 rpm for 15 min at room temperature. The pellet was resuspended in 2 mL extraction buffer containing 200 µg RNase A. After incubating the suspended DNA at 65 °C for 20 min with 2 mL nuclear lysis buffer (0.2 M Tris-HCl pH 7.5, 0.005 M EDTA pH 8.0 and 20 mg/mL CTAB Hexadecyl Trimethyl Ammonium Bromide) and 800 µL 5 % sarcosyl, it was mixed with an equal volume of chloroform: isoamyl alcohol (24:1), vortexed for 1 min, and centrifuged at 3,000 rpm for 5 min at room temperature. The DNA was precipitated with an equal volume of isopropyl alcohol, washed with 70 % ethanol, air dried, and dissolved in 400-700 µL 1X Tris/EDTA buffer (TE). DNA concentration was measured using Qubit Fluorometric Quantitation (Life Technologies). DNA quality was confirmed by running the DNA on a 0.8 % agarose gel in 1X Tris/Acetate/EDTA (TAE) for 30-40 min at 80 volts.

DNA Restriction Digestion

A 4 μ g sample of plant DNA was digested overnight in 400 μ L final volume with at least 5 μ L (10 units/ μ L) restriction enzyme (Invitrogen) at 37 °C. Digested DNA was concentrated by ethanol precipitation (40 μ L of 3M NaOAc, pH 5.3 and 1 mL ethanol) at -80 °C for 10 min followed by a wash with 70 % ethanol. The DNA pellet was dissolved in 20 μ L 1X TE followed by addition of 2 μ L DNA gel loading buffer, which consists of 40 % sucrose and 0.35 % Orange G (Sigma) in water.

Membrane Preparation and Transfer

Digested plant DNA was loaded on a 0.7 % agarose gel containing 1X Tris/Acetate/EDTA (TAE) buffer with 3-5 μ L ethidium bromide (10 mg/mL) and run at 35 volts for 18 h. The gel was photographed using a gel documentation system from Alpha Innotech (Santa Clara, California), then depurinated by submerging it in 0.25 N HCl for 2 x 10 min. The gel was subsequently placed in denaturation solution (0.5 M NaOH /1.5 M NaCl) for 2 x 15 min then neutralization solution (1.5 M NaCl and 0.5 M Tris-HCl pH 7.5) for 2 x 15 min on a shaker at room temperature. The gel was then equilibrated with 10X SSC for 10 min. The transfer of DNA to the nylon membrane was carried out using 10X SSC according to a standard capillary transfer method.

DIG-Labeled Probe Preparation

The labeling of the PCR-derived probe was achieved using Hotmaster *Taq* enzyme and buffer (Fisher BioReagents) according to Roche's DIG labeling instructions. A standard 50 μ L reaction consisted of 5 μ L of 10x Hotmaster *Taq* Buffer, 2-5 μ L of 10 μ M forward primer, 2-5 μ L of 10 μ M reverse primer, 5 μ L DIG-labeled dNTP (Roche), 10 ng plasmid template, and 0.75 μ L Hotmaster *Taq* polymerase. The PCR amplification conditions were dependent on each DIG-labeled probe. PCR with regular dNTP instead of DIG labeled dNTP was used as control. Quality of the DIG-labeled probe was assessed by running a small amount of the probe on 1 % agarose DNA gel (due to the presence of the DIG moieties on the DNA, probes migrate slower than the control PCR product). The probe was denatured before use by incubating the probe at 95 °C for 5 min followed by placing on ice for 2 min.

Probe Hybridization

The cross-linked nylon membrane was prehybridized in 40 mL pre-warmed DIG Easy Hybridization solution (Roche) at 42 °C for 1-4 h in a bottle using a standard hybridization oven (Amerex Instruments Inc.) at 20-25 rpm. Hybridization was carried out by replacing the prehybridization buffer with fresh preheated prehybridization solution, containing 25-50 μ L denatured DIG labeled probe. The membrane was incubated at 42 °C, 20-25 rpm for 16 h. The hybridization solution was stored at -20 °C and reused up to 3 times. The reused hybridization solution was heated at 68 °C for 10 min before use.

Detection

The hybridization solution was removed and replaced with 100 mL washing solution I (2X SSC/0.1 % SDS). The membrane was washed twice in washing solution I for 10 min at room temperature. This low stringency buffer was poured off and preheated high stringency washing solution II (0.5X SSC/0.1 % SDS, 60 °C) was added immediately. The membrane was washed twice in washing solution II at 68 °C for 20 min each at 25-30 rpm, followed by a brief rinse with 2X SSC to remove SDS. The membrane was rinsed with 150 mL 1X DIG Washing Solution (Roche) in a tray for 2 min and incubated in 1X Blocking solution (Roche) for 0.5-3 h on a low-speed shaker. The blocked membrane was incubated with DIG antibody solution (1:10,000 dilution of Anti-DIG-alkaline phosphate conjugate with 1X Blocking solution) for 30 min on a shaker at room temperature. The membrane was washed twice (15 min each) with 1X DIG Washing Solution (Roche) and equilibrated with 1X detection buffer. The detection reaction was carried out with 2 mL CDP-Star solution (1:100 diluted stock of CDP-Star with 1X detection buffer) for 5 min. The membrane was wrapped in a plastic film and either exposed to film or developed on an Amersham

Imager 600 (GE Healthcare Life Sciences). Films were developed with a Konica SRX-101A Z-ray film developer.

RESULTS

The E12 insert consists of a single nearly full-length T-DNA from plasmid, pSIM1278. The stability of the insert in E12 was assessed at the G0 and G3 clonal cycles using Southern blot analysis, demonstrating stability across clonal cycles. The GBS and AGP probes were used as they hybridize to multiple regions spanning the insert (Figure 1).

Evidence of genetic stability would entail consistent banding patterns on Southern blots across clonal cycles. Russet Burbank (WT) and E12 DNA was digested with the restriction enzyme, EcoRV. The EcoRV restriction enzyme digests the pSIM1278 insert into multiple bands that can be distinguished by size and probe specificity (Figure 1).

The probes used in this study bind to potato genes, so the Russet Burbank (WT) bands result from detection of endogenous genes. Only bands unique to E12 are associated with the insert.

Insert Stability in E12

The red boxes in Figure 1 show that the EcoRV digest is expected to produce three bands (2.2 kb, 2.3 kb, and 4.5 kb) associated with the pSIM1278 DNA. Southern blots hybridized separately with the GBS or AGP probes confirm the presence and size these bands (Figure 2 and Figure 3).

Figure 1. Structure of the pSIM1278 Insert in E12

The pSIM1278 insert in E12 is shown with the EcoRV restriction sites. The bands expected following EcoRV digestion are indicated below the insert map as red boxes with their observed size. A colored indicator notes the binding site for each probe.

The AGP probe hybridized to two bands associated with the pSIM1278 insert (2.2 kb and 2.3 kb; Figure 1). These bands were detected consistently in the E12 plants over clonal cycles (Figure 2). The GBS probe was expected to hybridize to two bands associated with the pSIM1278 insert (2.3 kb and 4.5 kb). These bands were observed in each of the E12 samples over clonal cycles (Figure 3), indicating the stability of

the insert. The banding pattern of the WT remained constant over the clonal cycles (Figure 2 and Figure 3). These endogenous bands are observed in E12 and are not related to the insert.

Southern blots of genomic DNA isolated from G0 leaves and G3 tubers of Russet Burbank control (WT) and E12 hybridized with the AGP probe. Four µg of each sample were digested with EcoRV and separated by electrophoresis prior to transfer and hybridization with the indicated probe. Red arrows indicate pSIM1278 insert bands with the indicated sizes. Molecular weight markers (DIGII and DIGVII) were included with band sizes indicated in kilobase pairs (kb).

Figure 3. E12 Insert Stability in G0 and G3 Clonal Cycles Visualized with the GBS Probe

Southern blots of genomic DNA isolated from G0 leaves and G3 tubers of Russet Burbank control (WT) and E12 hybridized with the GBS probe. Four µg of each sample were digested with EcoRV and separated by electrophoresis prior to transfer and hybridization with the indicated probe. Red arrows indicate pSIM1278 insert bands with the indicated sizes. Molecular weight markers (DIGII and DIGVII) were included with band sizes indicated in kilobase pairs (kb).

CONCLUSION

The Southern blot results showed consistent banding patterns between G0 and G3 clonal cycles of E12 when analyzed by Southern blot. As potatoes are clonally propagated, all progeny produced from an individual plant are considered genetically identical. Consequently, evaluating insert stability by examining inheritance across clonal cycles using Mendelian segregation analysis is not applicable for potatoes. This study demonstrates that the insert in E12 is stable and was maintained across clonal cycles.

STUDY TITLE

RNA Expression of Down-Regulated Genes in Russet Burbank E12

AUTHORS

REPORT DATE 12/10/15

PERFORMING LABORATORY

SPS Regulatory Lab J.R. Simplot Company Simplot Plant Sciences 5369 W. Irving St. Boise, ID 83706

> STUDY NUMBER 15-71-SPS-MOL

CERTIFICATION PAGE

This report is an accurate and complete representation of the study activities.

1**2/10/15** Date

Associate Regulatory Scientist

12/10/15 Date

Senior Regulatory Science Manager

TABLE OF CONTENTS

ABSTRACT
INTRODUCTION
STUDY OBJECTIVES
STUDY DATES 5
KEY STUDY PERSONNEL
Tuber
Leat10
Stem
Root
Flower
CONCLUSION

ABSTRACT

Event E12 was developed by transforming Russet Burbank with pSIM1278. The inserted cassettes were designed to down-regulate expression of four genes: *Asn1, Ppo5, PhL*, and *R1*. The results demonstrate reduced expression of the *Asn1* and *Ppo5* genes in tubers. Gene expression in other tissues was unaffected, except for a small reduction of *Asn1* RNA levels in flowers.

INTRODUCTION

Event E12 was developed by transforming Russet Burbank (RB) with pSIM1278. The pSIM1278 construct introduced two cassettes intended to down-regulate expression of the *Asn1*, *Ppo5*, *PhL*, and *R1* genes.

Each cassette is driven by promoters primarily active in tubers to facilitate tissue-specific down-regulation. The effectiveness of target gene down-regulation and tissue-specificity was evaluated by northern blot analysis in potato tuber, leaf, stem, root, and flower tissues.

STUDY OBJECTIVES

The objectives of this study are:

- 1. Demonstrate down-regulation of target genes in E12 tubers.
- 2. Determine the tissue-specificity of target gene down-regulation in E12 plants.

STUDY DATES

01/2008 - 12/2015

KEY STUDY PERSONNEL

MATERIALS AND METHODS

Plant Material

Leaf, stem, root, and flower tissues of first generation field grown E12 and RB plants (G1) were collected from Jerome, ID and Parma, ID. Tubers were collected at harvest. All samples were flash frozen in liquid nitrogen and stored at -80 °C.

RNA Isolation

RNA was extracted from tuber and root tissues using Plant RNA reagent (Invitrogen[™], Thermo Fisher Scientific, Waltham, MA). Trizol reagent (Invitrogen[™]) was used to extract RNA from leaf, flower, and stem tissues. The concentration of isolated RNA was measured using a Qubit 2.0 fluorometer (Invitrogen[™]) and RNA quality was confirmed by electrophoresis on 1 % agarose gels in 200 mM MOPS buffer containing 50 mM NaOAc and 20 mM EDTA (pH 7.0) for 30-60 min at 90 volts.

RNA Transfer

RNA was denatured by heating at 65 °C for 10 min followed by 5 min incubation on ice. RNA samples were electrophoresed on 1 % agarose gels containing 0.1-0.25 μ g/mL ethidium bromide and 2 % formaldehyde. Gels were run at 80-85 volts for 2-3 h and imaged using an Alphalmager HP instrument (ProteinSimple, San Jose, CA). The gels were washed twice in 10X Saline Sodium Citrate (SSC) for 15 min to remove formaldehyde. RNA was transferred to a nylon membrane (Roche, Indianapolis, IN) by capillary transfer in 10X SSC buffer for 16-18 h and stabilized by UV cross-linking (UVP, Upland, CA). Transferred membranes were stored at 4 °C until probed.

Probe Labelling

Probes were DIG labeled using PCR. Probes were made complementary to the four target genes and to the 18S rRNA as a control. Primers used for probe amplification and probe lengths are shown in Table 1. A typical reaction (50 μ L) contained 5 μ L HotMasterTM Taq Buffer (Thermo Fisher), 0.4-1 μ M forward primer, 0.4-1 μ M reverse primer, 5 μ L DIG-labeled dNTP (Roche), 5-30 ng plasmid template, and 0.5-0.75 μ L HotMasterTM Taq polymerase. PCR conditions were specific to each probe. The size and purity of the DIG-labeled probe was confirmed by agarose gel electrophoresis. As expected, the labeled probe migrated slower than the unlabeled control. The probe was denatured before use (5 min at 95 °C) and quenched on ice.

Probe	Target	Primer Sequences (5' to 3')	Size (bp)			
A C N 1		GGTTGATGACTGATGTCCCCTTTG	1115			
ASNI ASNI transcript		TAGTTAGCTCCTTATTGTGAGCTC	1115			
	Real transcript	ATCTTCCACTCCTAAGCCCTCTCAAC	964			
PP05	Pp05 transcript	CCGCCAAAGAACATCCGAGG				
DLI	Phi transcript	CAATTCCAGATTCATCCATTTCAC	069			
PNL	PhL transcript	CATCCCCAGGGTAGAGTATGTAAC				
D1	P1 transprint	950				
KT.	KI transcript	CAGGTATATCACTCTTTGTTAC	852			
100		GCATTTGCCAAGGATGTTTT	604			
103	TOSTRINA	GTACAAAGGGCAGGGACGTA	094			

Table 1. Primers and Probes Used for Northern Analysis of Potato Genes

¹The PPO probe was derived from the expressed *Ppo5* gene from *S. tuberosum*. The probe hybridizes with *Ppo* genes expressed in other tissues. The *Ppo5* sequence in pSIM1278 comes from the untranslated trailer of the *S. verrucosum Ppo5* gene.

Hybridization

Prior to use, hybridization solution was heated to 68 °C for 10 min. Membranes were incubated in 40 mL warm DIG Easy Hybridization solution (Roche) at 42 °C for 1-4 h with rotation at 20-25 rpm. The hybridization solution was replaced with 40 mL warm hybridization solution containing 25-50 μ L of the DIG-labeled probe and incubated for 3-16 h at 42 °C. For each tissue, blots were stripped and probed again using the indicated probe.

Detection

Blots were washed twice with solution I (2X SSC/0.1 % SDS) for 10 min at room temperature (RT) with rotation at 25-30 rpm. Blots were washed twice with solution II (0.5X SSC/ 0.1 % SDS) for 20 min at 60 °C with rotation at 25-30 rpm. A final wash step was carried out in solution III (0.1X SSC/ 0.1 % SDS) for 20 min at 65 °C. Blots were rinsed with 2X SSC to remove SDS. The membrane was rinsed with 100 mL 1X DIG Washing Solution (Roche) for 2 min at RT and then blocked with 1X Blocking solution (Roche) for 30 min to 3 h at RT with constant shaking. A 1:10,000 dilution of anti-DIG-alkaline phosphate conjugate was added and blots incubated for 30 min at RT with constant shaking. Membranes were washed twice (15 min each) with 1X DIG Washing Solution and equilibrated in 1X detection buffer. A 1:100 dilution of CDP-Star was added. After 5 min the membrane was wrapped in plastic and developed at exposure times ranging from 1 to 25 min using an Amersham[™] Imager 600 instrument (GE Healthcare Life Sciences, Pittsburgh, PA).

RESULTS

RNA was isolated from field grown E12 and RB control plants (WT) and analyzed by northern blot to determine the extent of down-regulation of the target genes. Tissue specificity was determined by comparing gene expression levels between tuber, leaf, stem, root, and flower tissues.

The results showed that *Asn1* and *Ppo5* were down-regulated in tubers (Figure 1). No differences were observed in other tissues, except for a partial down-regulation of *Asn1* in flower tissue (Figure 2, Figure 3, Figure 4, and Figure 5). The 18S RNA and total RNA levels were consistent across samples allowing for direct comparisons of *Asn1*, *Ppo5*, *PhL*, and *R1* transcripts between samples in a given tissue. Results of this study are summarized in Table 2.

Table 2. Summary of the Expression of Genes Targeted for Down-Regulation in E12 Tissues

Gene	Tuber	Leaf	Stem	Root	Flower
Asn1	\checkmark	-	-	-	\checkmark
Ppo5	\checkmark	-	-	-	-
PhL	-	-	-	-	-
R1	-	-	-	-	-

 \checkmark = down-regulated, - = not down-regulated.

Tuber

The absence of a band in the E12 samples probed for ASN1 and PPO5 indicated down-regulation of *Asn1* and *Ppo5* gene expression in E12 tubers compared to the RB controls (WT) (Figure 1). The down-regulation was particularly strong as nearly complete absence of the target RNA signal was observed. *PhL* and *R1* expression levels were unchanged between E12 and WT tuber samples (Figure 1).

Figure 1. Changes in Asn1 and Ppo5 Gene Expression in E12 Tubers

Leaf

Down-regulation was not observed for any of the four target genes in E12 leaf samples compared to the RB control (WT) consistent with tuber-specific gene silencing (Figure 2).

Figure 2. No Changes in RNAi Target Gene Expression in E12 Leaves

Stem

Down-regulation was not observed for any of the four target genes in E12 stem samples compared to the RB control (WT) consistent with tuber-specific gene silencing (Figure 3).

Figure 3. No Changes in RNAi Target Gene Expression in E12 Stems

Root

Down-regulation was not observed for any of the four target genes in E12 root samples compared to the RB control (WT) consistent with tuber-specific gene silencing (Figure 4).

Figure 4. No Changes in RNAi Target Gene Expression in E12 Roots

Flower

A minor decrease in *Asn1* gene expression was observed in E12 flower samples (Figure 5). There was no observable down-regulation of other genes in E12 flower samples consistent with tuber-specific gene silencing (Figure 5).

CONCLUSION

The pSIM1278 construct introduced two cassettes intended to down-regulate expression of the *Asn1*, *Ppo5*, *PhL*, and *R1* genes. The cassettes are driven by promoters primarily active in tubers to facilitate tissue-specific down-regulation. The effectiveness of target gene down-regulation and tissue-specificity was evaluated by northern blot analysis in potato tuber, leaf, stem, root, and flower tissues. *Asn1* and *Ppo5* gene levels were down-regulated in E12 tubers as intended. The expression level of the target genes was unaffected in other tissues, except for a partial down-regulation of *Asn1* in flower, consistent with tuber-specific gene silencing.

STUDY TITLE

Construction of pSIM1278

AUTHORS

REPORT DATE 12/28/2015

PERFORMING LABORATORIES SPS Regulatory Lab

> STUDY NUMBER 15-75-SPS-MOL

CERTIFICATION PAGE

This report is an accurate and complete representation of the study activities.

12/28/15

Date

Senior Regulatory Scientist

<u>|2/28/15</u> Date

Regulatory Science Manager

TABLE OF CONTENTS

ABSTRACT	4
INTRODUCTION	4
STUDY OBJECTIVES	4
STUDY DATES	4
KEY STUDY PERSONNEL	4
DESCRIPTION of pSIM1278	5
pSIM1278 Backbone	5
pSIM1278 T-DNA	5
DESCRIPTION of pSIM1278 GENETIC ELEMENTS	5
ASSEMBLY OF PLASMID pSIM1278	10
CONCLUSIONS	12
REFERENCES	13

ABSTRACT

The plasmid pSIM1278 is a 19.7 kb binary vector used to transform potatoes. Details are included for both backbone and T-DNA genetic elements and the cloning steps used to create the plasmid. The T-DNA region of pSIM1278 consists of two cassettes designed to down-regulate potato genes, *Asn1*, *Ppo5*, *R1*, and *PhL*, in tubers. The plasmid backbone contains sequence for maintaining the plasmid in *Agrobacterium* and *Escherichia coli*, an overdrive sequence to enhance cleavage at the right border, a kanamycin selectable marker, and *ipt* for screening to select against plants containing vector backbone DNA.

INTRODUCTION

This report provides detailed information on the assembly of plasmid pSIM1278, a 19.7 kb binary transformation vector used to transform potatoes. This report shows the source of the genetic elements, the cloning steps for the backbone and T-DNA sequences, and the order of the elements in the plasmid.

STUDY OBJECTIVES

The objective of this study was to characterize the pSIM1278 plasmid and its assembly.

STUDY DATES

2/2007 - 9/2007

KEY STUDY PERSONNEL

DESCRIPTION of pSIM1278

pSIM1278 Backbone

The plasmid backbone (Figure 1; Table 1) contains two well-characterized bacterial origins of replication. pVS1 (pVS1 Sta and Rep) enables maintenance of the plasmid in *Agrobacterium*, and pBR322 (pBR322 bom and ori) enables maintenance of the plasmid in *Escherichia coli*. The *Agrobacterium* DNA overdrive sequence enhances cleavage at the RB, and the *E. coli. nptII* gene is a bacterial kanamycin selectable marker. The backbone contains an expression cassette comprising the *Agrobacterium* isopentenyl transferase (*ipt*) gene flanked by the Ranger Russet potato polyubiquitin (*Ubi7*) promoter and the Ranger Russet potato polyubiquitin (*Ubi3*) terminator (Garbarino and Belknap, 1994). The *ipt* cassette introduces a phenotype used to select against plasmid backbone DNA integration in the host plant. When present in transformed plant tissue, overexpression of *ipt* results in the overproduction of the plant hormone cytokinin resulting in plants with stunted phenotypes, abnormal leaves and the inability to root.

pSIM1278 T-DNA

Plasmid pSIM1278 T-DNA contains two expression cassettes (Figure 1):

- The first cassette (elements 4 to 12, Table 2) results in down-regulation of *Asn1* and *Ppo5* in the transformed potato variety. It is comprised of two identical 405 bp fragments of *Asn1* and two identical 144 bp fragments of *Ppo5*. The fragments of *Asn1* and *Ppo5* are arranged as inverted repeats separated by a non-coding 157 bp Ranger Russet potato nucleotide spacer element. The *Asn1* and *Ppo5* fragments are arranged between the two convergent potato promoters; the *Agp* promoter of the ADP glucose pyrophosphorylase gene (*Agp*) and the Gbss promoter of the granule-bound starch synthase gene (*Gbss*) that are primarily active in tubers. These promoters drive expression of the inverted repeats to generate double-stranded RNA and down-regulate *Asn1* and *Ppo5*.
- The second cassette (elements 14 to 21, Table 2) results in down-regulation of *PhL* and *R1* in the transformed potato variety. It is comprised of two identical 509 bp fragments of the *PhL* promoter region and two identical 532 bp fragments of *R1* promoter region. The PhL and R1 fragments are arranged as inverted repeats separated by a non-coding 258 bp fragment of the Ranger Russet potato polyubiquitin gene. Like the first cassette, the PhL and R1 fragments are arranged between and transcribed by the potato *Agp* and *Gbss* promoters.

DESCRIPTION of pSIM1278 GENETIC ELEMENTS

The genetic elements in the pSIM1278 backbone region are detailed in Table 1 and the genetic elements in the T-DNA region are detailed in Table 2.

Figure 1. Schematic Diagram of pSIM1278

Table 1. Genetic Elements of the pSIM1278 Backbone

Genetic Element	Origin	Accession	Position	Size	Function
		Number ¹		(bp)	
1. Intervening sequence	Synthetic DNA		10,149-	6	Sequence used for cloning
			10,154		
2. Overdrive	Agrobacterium	NC_002377	10,155-		Enhances cleavage of A. tumefaciens
	tumefaciens		10,184	30	Right Border site ¹
	Ti-plasmid				
3. Intervening sequence	Pseudomonas	AJ537514	10,185-		pVS1 backbone ¹
	fluorescens pVS1		11,266	1,082	
pVS1 partitioning	P. fluorescens	AJ537514	11,267-		pVS1 stability ¹
protein StaA (PVS1 Sta)	pVS1		12,267	1,001	
5. Intervening sequence	P. fluorescens	AJ537514	12,268-		pVS1 backbone ¹
	pVS1		12,860	593	
6. pVS1 replicon	P. fluorescens	AJ537514	12,861-		pVS1 replication region in
(pVS1Rep)	pVS1		13,861	1,001	Agrobacterium ¹
7. Intervening sequence	P. fluorescens	AJ537514	13,862-		pVS1 backbone ¹
	pVS1		14,099	238	
8. Intervening sequence	pBR322	AF234297	14,100-		pCambia1301 backbone ¹
			14,270	171	
9. pBR322 bom	pBR322	AF234297	14,271-		pBR322 region for replication in E.
			14,531	261	coli ¹
10. Intervening sequence	pBR322	AF234297	14,532-		pBR322 backbone ¹
			14,670	139	
11. Origin of replication	pBR322	AF234297	14,671-		Bacterial origin of replication ¹
for pBR322 (pBR322 ori)			14,951	281	
12. Intervening sequence	pBR322	AF234297	14,952-		pCambia1301 backbone ¹
			15,241	290	
13. Neomycin	Tn5 transposon	FJ362602	15,242-	795	Aminoglycoside phosphotransferase ¹
phosphotransferase II			16,036		(Simpson et al., 1985)
(<i>nptll</i>) gene					
14. Intervening sequence	Vector DNA	FJ362602	16,037-	195	pCAMBIA vector backbone ¹
			16,231		
15. Terminator of the	S. tuberosum	GP755544	16,232-		Terminator for ipt gene transcription
ubiquitin-3 gene (tUbi3)			16,586	355	(Garbarino and Belknap, 1994)
16. Intervening sequence	A. tumefaciens	NC_002377	16,587-		Sequence used for DNA cloning
	Ti-plasmid		16,937	351	
17. Isopentenyl	A. tumefaciens	NC_002377	16,938-		Condensation of AMP and
transferase (ipt) gene	Ti-plasmid		17,660	723	isopentenyl-pyrophosphate to form
					isopentenyl-AMP, a cytokinin in the
					plant. Results in abnormal growth
					phenotypes in plant (Smigocki and
					Owens, 1988)
18. Intervening sequence	Synthetic DNA		17,661-		Sequence used for DNA cloning
			17,672	12	
19. Polyubiquitin	S. tuberosum	U26831	17,673-		Promoter to drive expression of the
promoter (Ubi7)	var. Ranger		19,410	1,738	ipt backbone marker gene (Garbarino
	Russet				et al., 1995)
20. Intervening sequence	Vector DNA	U10460	19,411-		pZP200 vector backbone ¹
			19,660	250	

¹ http://www.ncbi.nlm.nih.gov/nuccore/AF234297.1

Table 2. Genetic Elements of pSIM1278 T-DNA, from Left Border Site to Right Border

Genetic Element	Origin	Accession Number	Position (pSIM1278)	Size (bp)	Intended Function
1. Left Border (LB) site ¹	Synthetic	AY566555 ² (bases 1-25)	1 – 25	25	Site for secondary cleavage to release single-stranded DNA insert from pSIM1278 (van Haaren et al., 1989)
2. Left Border region sequence	S. tuberosum var. Ranger Russet.	AY566555 ² (bases 26- 187)	26 – 187	162	Supports secondary cleavage at LB
3. Intervening Sequence	S. tuberosum	AF393847	188 –193	6	Sequence used for DNA cloning
4. Promoter for the ADP glucose pyrophosphorylase gene (pAgp), 1st copy	S. tuberosum var. Ranger Russet	HM363752	194-2,453	2260	One of the two convergent promoters that drives expression of an inverted repeat containing fragments of Asn1 and Ppo5, especially in tubers
5. Fragment of the asparagine synthetase-1 (Asn1) gene (1st copy antisense orientation)	S. tuberosum var. Ranger Russet	HM363759	2,454-2,858	405	Generates with (11) double stranded RNA that triggers the degradation of Asn1 transcripts to impair asparagine formation (Chawla et al., 2012 ²)
6. 3'-untranslated sequence of the polyphenol oxidase-5 gene (Ppo5) (1st copy, in antisense orientation)	S. verrucosum	HM363754	2,859-3,002	144	Generates with (9) double stranded RNA that triggers the degradation of Ppo5 transcripts to block black spot development
7. Intervening Sequence	S. tuberosum	DQ478950	3,003-3,008	6	Sequence used for DNA cloning
8. Spacer-1	<i>S. tuberosum</i> var. Ranger Russet	HM363753	3,009-3,165	157	Sequence between the 1st inverted repeats
9. 3'-untranslated sequence of the polyphenol oxidase-5 gene (Ppo5) (2nd copy, in sense orientation)	S. verrucosum	HM363754	3,166-3,309	144	Generates with (6) double stranded RNA that triggers the degradation of Ppo5 transcripts to block black spot development
10. Fragment of the asparagine synthetase-1 (Asn1) gene (2nd copy, in sense orientation)	<i>S. tuberosum</i> var. Ranger Russet	HM363759	3,310-3,715	406	Generates with (5) double stranded RNA that triggers the degradation of Asn1 transcripts to impair asparagine formation (Chawla et al., 2012 ²)
11. Intervening Sequence	S. tuberosum	X73477	3,716-3,721	6	Sequence used for DNA cloning
12. Promoter for the granule-bound starch synthase (pGbss) gene (1st copy, convergent orientation relative to the 1st copy of pAgp)	S. tuberosum var. Ranger Russet	HM363755	3,722-4,407	686	One of the two convergent promoters that drives expression of an inverted repeat containing fragments of Asn1 and Ppo5, especially in tubers
13. Intervening Sequence	S. tuberosum	X95996 / AF393847	4,408-4,423	16	Sequence used for DNA cloning
14. pAgp, 2nd copy	<i>S. tuberosum</i> var. Ranger Russet	HM363752	4,424-6,683	2260	One of the two convergent promoters that drives expression of an inverted repeat containing fragments of the promoters of PhL and R1, especially in tubers
15. Fragment of promoter for the potato phosphorylase-L (PhL) gene (1st copy, in antisense orientation)	S. tuberosum var. Ranger Russet	HM363758	6,684-7,192	509	Generates with (21) double stranded RNA that triggers the degradation of PhL transcripts to limit the formation of reducing sugars through starch degradation

16. Fragment of promoter for the potato R1 gene (1st copy, in antisense orientation)	S. tuberosum var. Ranger Russet	HM363757	7,193-7,724	532	Generates with (20) double stranded RNA that triggers the degradation of R1 transcripts to limit the formation of reducing sugars through starch degradation
17. Intervening Sequence	S. tuberosum	DQ478950	7,725-7,730	6	Sequence used for DNA cloning
18. Spacer-2	<i>S. tuberosum</i> var. Ranger Russet	U26831 ³	7,731-7,988	258	Sequence between the 2nd inverted repeat
19. Fragment of promoter for the potato R1 gene (2nd copy, in sense orientation)	S. tuberosum var. Ranger Russet	HM363757	7,989-8,520	532	Generates with (20) double stranded RNA that triggers the degradation of R1 transcripts to limit the formation of reducing sugars through starch degradation
20. Fragment of promoter for the potato phosphorylase-L (PhL) gene (2nd copy, in sense orientation)	S. tuberosum var. Ranger Russet	HM363758	8,521-9,029	509	Generates with (16) double stranded RNA that triggers the degradation of PhL transcript to limit the formation of reducing sugars through starch degradation
21. pGbss (2nd copy, convergent orientation relative to the 2nd copy of pAgp)	S. tuberosum var. Ranger Russet	X83220 ⁴	9,030-9,953	924	One of the two convergent promoters that drives expression of an inverted repeat containing fragments of the promoters of PhL and R1, especially in tubers
22. Intervening Sequence	S. tuberosum	AF143202	9,954 – 9,962	9	Sequence used for DNA cloning
23. Right Border region sequence	S. tuberosum var. Ranger Russet	AY566555⁵ (bases 231- 391)	9,963 – 10,123	161	Supports primary cleavage at RB site
24. Right Border (RB) sequence ¹	Synthetic	AY566555⁵ (bases 392- 416)	10,124 – 10,148	25	Site for primary cleavage to release single stranded DNA insert from pSIM1278 (van Haaren et al 1989)

¹The LB and RB sequences (25-bp each) were synthetically designed to be similar to and function like T-DNA borders from Agrobacterium tumefaciens.

²ASN1 described as genetic elements 5 and 11 is referred to as StAst1 in Chawla et al., 2012.

³ GenBank Accession HM363756 is replaced with a citation to GenBank Accession U26831 to properly include four 3' end nucleotides present in the pGbss DNA element of the pSIM1278 construct.

⁴ GenBank Accession HM363755 is replaced with a citation to GenBank Accession X83220 to properly include the full pGbss (2nd copy) DNA insert sequence present in the pSIM1278 construct.

⁵GenBank Accession AY566555 was revised to clarify the sources of DNA for the Border regions.

ASSEMBLY OF PLASMID pSIM1278

The plasmid, pSIM1278, was constructed as outlined in Figure 2 using DNA sequences as described in Table 1 and Table 2. The starting vector, pCAMBIA1301, contains the origins of replications in the final pSIM1278 backbone.

1. Deleted T-DNA region between the SacII and SphI restriction sites of pCAMBIA1301.

- 2. Inserted new T-DNA region between the SacII and SphI restriction sites adding KpnI and SacI restriction sites.
- 3. Inserted ipt cassette (pUbi7, *ipt*, tUbi3) into SacII restriction site.

 Deleted DNA between Kpnl and Sacl. Inserted T-DNA region assembled from potato DNA sequence (Figure 3) into Kpn1 and Sacl.

Figure 2. Construction of pSIM1278

Figure 3. Construction of T-DNA Expression Cassettes

Fusion PCR was used to amplify elements 1A (pAgp – 1st copy), 1B (pAgp-2nd copy), 2 (Asn1, Ppo5), 3 (Ppo5, Asn1), 4 (pGbss -1st copy) and 7 (Spacer1, Ppo5, Asn1). Elements 5 (PhL, R1) and 6 (Spacer2, R1, PhL, pGbss) were synthesized by the Blue Heron Biotechnology, Inc. (Bothell, WA) based on the sequence from the potato genome. Elements 8, 9, and 10 were generated by ligating building blocks shown in the figure. In the end, three fragments, 10, 11 and 6 were created to span the desired expression cassette. These three fragments were ligated and inserted into the KpnI – SacI restriction sites shown in Figure 2 to generate pSIM1278.

CONCLUSIONS

The pSIM1278 plasmid is a binary vector designed for potato plant transformation. The vector backbone contains sequences for replication in both *E. coli* and *Agrobacterium* along with an *ipt* marker for screening to eliminate plants with vector backbone DNA. The T-DNA region consists of two expression cassettes flanked by LB and RB sequences. Upon inoculation of host plant tissue with *Agrobacterium* containing the pSIM1278 vector, the T-DNA region of pSIM1278 is transferred into the host genome.

REFERENCES

Chawla, R., Shakya, R., and Rommens, C.M. (2012). Tuber-Specific Silencing of Asparagine Synthetase-1 Reduces the Acrylamide-Forming Potential of Potatoes Grown in the Field without Affecting Tuber Shape and Yield. Plant Biotechnology Journal *10*, 913–924.

Garbarino, J.E., and Belknap, W.R. (1994). Expression of Its Promoter in Transgenic Plants. 119–127.

Garbarino, J.E., Oosumi, T., and Belknap, W.R. (1995). Isolation of a Polyubiquitin Promoter and Its Expression in Transgenic Potato Plants. Plant Physiology *109*, 1371–1378.

van Haaren, M.J.J., Sedee, N.J.A., de Boer, H.A., Schilperoort, R.A., and Hooykaas, P.J.J. (1989). Mutational Analysis of the Conserved Domains of a T-Region Border Repeat of Agrobacterium Tumefaciens. Plant Molecular Biology *13*, 523–531.

Simpson, J., Timko, M.P., Cashmore, A.R., Schell, J., Van Montagu, M., and Herrera-Estrella, L. (1985). Light-Inducible and Tissue-Specific Expression of a Chimaeric Gene under Control of the 5'-Flanking Sequence of a Pea Chlorophyll A/b-Binding Protein Gene. The EMBO Journal *4*, 2723–2729.

Smigocki, a C., and Owens, L.D. (1988). Cytokinin Gene Fused with a Strong Promoter Enhances Shoot Organogenesis and Zeatin Levels in Transformed Plant Cells. Proceedings of the National Academy of Sciences of the United States of America *85*, 5131–5135.

STUDY TITLE

Evaluation of Allergen and Toxin Homology of Start-to-Stop Open Reading Frames in Event E12

AUTHOR

REPORT DATE 09/23/15

PERFORMING LABORATORIES SPS Regulatory Lab

> STUDY NUMBER(S) 15-79-SPS-MOL

CERTIFICATION PAGE

This report is an accurate and complete representation of the study activities.

9/23/15 Date

Senior Regulatory Science Manager

TABLE OF CONTENTS

ABSTRACT
INTRODUCTION
STUDY OBJECTIVES
STUDY DATES
KEY STUDY PERSONNEL
MATERIALS AND METHODS
RESULTS7
Start-to-stop ORF identification7
Allergenicity Assessment
Full-length homology search8
80-mer homology search8
8-mer identity search
Toxicity Assessment9
CONCLUSION9
REFERENCES

ABSTRACT

An analysis was completed to assess open reading frames (ORFs) in event E12, which was generated by transformation of Russet Burbank potatoes with pSIM1278 T-DNA. Novel ORFs were evaluated using bioinformatics (i.e., amino acid sequence comparison techniques) to assess their similarity to known toxins or allergens. Bioinformatic analyses of 27 start-to-stop ORFs within the DNA insert and genomic junction regions demonstrated no putative polypeptides with relevant homology to proteins that are known to be toxic, allergenic, or to have other biologically adverse properties.

INTRODUCTION

An analysis was completed to determine the toxin or allergen homology, if any, of open reading frames (ORFs) introduced into event E12 through transformation with pSIM1278 T-DNA. This report assesses the allergen and toxin homology of the start-to-stop open reading frames in the E12 insert and junction regions using the standard bioinformatic techniques summarized in Table 1.

Expression of toxins or allergens is unlikely, particularly in potatoes transformed with potato DNA. Most of the ORFs contained in the E12 T-DNA insert exist naturally elsewhere in the potato genome.

Well-established techniques in bioinformatics were used to evaluate the insert in E12 (Ladics, 2007; Goodman, 2008; Terrat, 2013).

Analysis	Purpose	Approach	
Start-to-stop ORF	Identify all open reading frames	Internally developed Python script	
Analysis	associated with the T-DNA insert,	systematically identifies all ORFs (≥30	
	including junction regions	amino acids) located between a start	
		codon and a stop codon where all six	
		reading frames are considered	
Allergenicity Analysis	Ensure that known allergenic	AllergenOnline (FASTA Search):	
	sequences have not been	identify any small regions of similarity	
	introduced through transformation	or larger regions of homology	
		between ORFs and known allergens	
Toxicity Analysis	Ensure that sequences similar to	FASTA Search (fasta36): Identify any	
	known toxins have not been	annotated toxins with regions of	
	introduced through transformation	similarity to ORFs associated with the	
		insert	

Table 1: Overview of Analyses using Bioinformatics

STUDY OBJECTIVES

The objectives of this study were:

- 1. Perform a comprehensive start-to-stop ORF analysis covering the DNA insert and its genomic junctions with the flanking regions;
- 2. Identify and evaluate any potential allergens based upon similarity between the ORFs and known allergens; and
- 3. Identify and evaluate any potential toxins based upon similarity between the ORFs and known toxins.

STUDY DATES 06/2015 - 09/2015

KEY STUDY PERSONNEL

MATERIALS AND METHODS

ORF detection

All open reading frames (ORFs) created as a result of the T-DNA insertion were identified using a Simplot-developed Python script (BioPython). The search parameters were defined to identify all ORFs with at least 30 amino acids located between the first ATG start codon in an ORF and the subsequent stop codon. Since a nucleotide sequence can be translated in three reading frames from two directions, all six reading frames of the E12 insert and flanking regions were analyzed for potential ORFs. The results were converted into FASTA-formatted files containing all unique protein sequences for further analysis. In addition, a FASTA-formatted file was generated where 20 ORFs were concatenated together and separated by the string "xxxxxx" to expedite the 80mer allergen scanning algorithm by allowing it to search multiple ORFs at a time.

The input and output file names for all analyses are described in Table 2.

Analysis	Input File	Output File
ORF Finder	E12.fasta	E12_start_to_stop.fasta
		E12_start_to_stop_concat.fasta
Toxin Search	E12_start_to_stop.fasta	E12_start_toxin15.txt
Allergen – Full	E12_start_to_stop.fasta	E12_start_allergen_full.txt
Allergen – 80mer	E12_start_to_stop_concat.fasta	E12_start_allergen_80mer.txt
Allergen – 8mer	E12_start_to_stop.fasta	E12_start_allergen_8mer.txt

Table 2: Data Files for Bioinformatics Analyses

Allergenicity database searches

Allergenicity potential was evaluated using the public, allergen-specific search engine (<u>http://www.allergenonline.org/databasefasta.shtml</u>) available through the Food Allergy Research and Resource Program (FARRP) at the University of Nebraska. All searches were performed using the most current database (version 15; January 12, 2015). Version 15 contains 1897 protein sequence entries that are categorized into 744 taxonomic-protein groups of unique proven or putative allergens (food, airway, venom/salivary and contact). Some of the allergenic wheat gliadins or glutenins may also cause celiac disease, however they are listed on the allergen site if there is evidence of IgE binding. The ORFs were analyzed using full-length, 80-mer local, and 8-mer exact match alignments.

Toxin database searches

The most recent UniProt database (49,293,307 entries) was used to extract proteins containing the keyword, "toxin", in the annotation for protein function. The toxin-related proteins were downloaded from the UniProt website (<u>www.uniprot.org/downloads</u>) on June 19, 2015 into a local, FASTA-formatted file (referred to as *toxin15*), which contained 10,555 protein sequences. In addition to actual toxins, this database includes proteins that have roles related to toxin production, exposure, or protection.

The FASTA36 software package (<u>http://faculty.virginia.edu/wrpearson/fasta/fasta36/</u>) was installed locally and used to perform protein homology searches (Pearson 1988, 2000, and 2003). All ORFs were queried against the toxin15 database with an E-value cutoff of $1x10^{-4}$:

>fasta36 -p -E 0.0001 E12_start_to_stop.fasta toxin15.fasta > E12_start_toxin15.txt

RESULTS

Start-to-stop ORF identification

A start-to-stop open reading frame is a contiguous sequence located between a canonical start codon and the next in-frame downstream stop codon. A Python script was used to identify all start-to-stop ORFs contained in the T-DNA insert and the adjacent potato flanking sequence, as shown schematically in Figure 1.

For E12 there were 27 unique ORFs identified, which were used in the subsequent allergen and toxin analyses.

Figure 1 - Complete ORF Analysis Scheme. A schematic diagram illustrating any T-DNA insertion site in the plant genome. All ORFs (≥30 amino acids, colored lines) contained within the DNA insert (red lines) or overlapping the genomic flanking sites on either end (blue lines) are identified for each insert and used in subsequent analyses.

Allergenicity Assessment

Evaluation of the 27 ORFs for similarity or identity to known allergens did not identify any significant matches. There are no allergen-based safety concerns associated with the E12 insert, including ORFs extending into flanking sequences.

The allergenic potential of the ORFs was assessed using the web-based tool (<u>http://www.allergenonline.org/databasefasta.shtml</u>) provided by the Food Allergy Research and Resource Program (FARRP). This tool allowed comparison of ORFs associated with the E12 insert to known allergens using multiple sequence identity searches:

- full-length alignments;
- 80 amino acid (80-mer) high local-identity alignments; and
- 8 amino acid (8-mer) exact matches.

Full-length matches consisting of greater than 50% identity are considered the most predictive of potential allergens (Aalberse, 2000), whereas the 80-mer search is a precautionary tool to identify smaller regions of high identity between any ORFs and those of known allergens. The allergen database contains the sequence of known allergens, but the specific sequence responsible for allergenicity is not necessarily known, nor is it known whether an 8-mer is capable of inducing an allergic response (Goodman, 2008).

Full-length homology search

A full-length homology search was performed to identify homology between the individual ORFs and known allergens. This analysis compared each of the 27 ORFs with the sequence of known allergens and reported any matches with greater than 35 % homology (E-value cutoff = 10^{-4}). The algorithm did not identify any potential allergens (Table 3) associated with the E12 insert.

80-mer homology search

A second analysis identified localized regions of similarity between the ORFs and known allergens. This analysis compared all contiguous 80 amino acid sequences within an ORF and identified any matches with greater than 35% homology to known allergens (E-value cutoff = 10). The algorithm did not identify any potential allergens (Table 3) associated with the E12 insert.

8-mer identity search

Lastly, a short identity analysis was performed to identify short (8-mer) regions of exact identity between ORFs and known allergens. The algorithm did not identify any potential allergens (Table 3) associated with the E12 insert.

Toxicity Assessment

Evaluation of the ORFs for homology to known toxins did not identify any significant matches, and indicated that there are no toxicity-based safety concerns associated with the E12 insert.

There are no well-curated toxin-specific databases. However, the UniProt/Swissprot database is an expansive and well-annotated protein database that can be queried for protein homology. A query against the entire database, much like a query against the NCBI database, will produce many non-specific hits that must be manually and somewhat subjectively inspected to determine whether the identified proteins present toxicity safety concerns.

In an effort to develop an approach that more closely parallels the allergenicity analysis performed using FARPP, a more selective database was generated by Simplot through guidance from bioinformatics experts at UniProt. The database was limited to proteins annotated to be toxins or associated with toxin production or exposure. A toxin-related database (toxin15.fasta) was generated by extracting all protein sequences from the UniProt database containing the keyword, "toxin".

The ORFs associated with the E12 insert were queried against this database using search parameters similar to the full-length allergen search at FARPP (FASTA36; E-value cutoff, 10⁻⁴). A summary of the results is included in Table 3.

Allergenicity Search Alignments			Toxicity Search Alignments
Full-length alignment	Scanning 80-mer	8-mer identity	Full-length
0	0	0	0

Table 3. Summary of Allergenicity and Toxicity Matches for ORFs Associated with E12 Insertion Site

CONCLUSION

Using well-established bioinformatic tools, a comprehensive analysis of the open reading frames in the insert and flanking regions of E12 was conducted. This bioinformatic analysis did not identify any potential toxin or allergen safety concerns with start-to-stop open reading frames associated with E12.

REFERENCES

Aalberse, R.C. (2000). Structural biology of allergens. Journal of Allergy and Clinical Immunology *106*:228-238.

Goodman R.E., Vieths S., Sampson H.A., Hill D., Ebisawa M., Taylor S.L., and R. van Ree. (2008). Allergenicity assessment of genetically modified crop-what makes sense? Nature Biotechnology 26(1):73-81.

Ladics G.S., Bannon G.A., Silvanovich A., and R.F. Cressman. (2007). Comparison of conventional FASTA identity searches with the 80 amino acid sliding window FASTA search for the elucidation of potential identities to known allergens. Molecular Nutrition and Food Research *51*:985-998.

Pearson, W.R. and D.J. Lipman. (1988). Improved tools for biological sequence comparison. Proceedings of the National Academy of Sciences *85*:2440-2448.

Pearson, W.R. (2000). Flexible sequence similarity searching with the FASTA3 program package. Methods in Molecular Biology *132*:185-219.

Pearson, W.R. (2003). Finding protein and nucleotide similarities with FASTA. Current Protocols in Bioinformatics. Section 3.9.1 to 3.9.23.

Terrat Y. and F. Ducancel. (2013). Are there unequivocal criteria to label a given protein as a toxin? Permissive versus conservative annotation processes. Genome Biology *14*:406-412.

STUDY TITLE

Efficacy of Polyphenol Oxidase Downregulation in E12 Tubers

AUTHORS

REPORT DATE

October 8, 2015

PERFORMING LABORATORIES

Simplot Plant Sciences, Boise, ID

STUDY NUMBER 15-84-SPS-MOL

CERTIFICATION PAGE

Senior Regulatory Science Manager

This report is an accurate and complete representation of the study activities.

TABLE OF CONTENTS

BSTRACT	4
VTRODUCTION	5
TUDY OBJECTIVES	5
TUDY DATES	5
EY PERSONNEL	5
1ATERIALS AND METHODS	6
ESULTS	7
ONCLUSION	8
EFERENCES	9

ABSTRACT

The purpose of this study was to evaluate the trait efficacy of polyphenol oxidase (PPO) downregulation in potato event E12 compared with its parental control Russet Burbank. A field trial was conducted in Canyon County, Idaho during the 2015 growing season. Plots of the test and control varieties were harvested, and tubers were assessed for the darkening associated with the PPO enzyme using a colorimetric assay. As expected, the assessment evaluating PPO activity demonstrated that E12 tubers have consistently lower levels of PPO activity than its parental control.

INTRODUCTION

Potato event E12 was generated by transforming Russet Burbank with pSIM1278 using *Agrobacterium* transformation. One of the traits conferred by the T-DNA of pSIM1278 is reduced black spot.

Black spot is a post-harvest physiological phenomenon primarily resulting from the handling of potato tubers during harvest, transport, and processing, and refers to the black or grayish color that may form in the interior of damaged potatoes. The enzymatic darkening and discoloration, associated with the enzyme polyphenol oxidase (PPO), occurs when PPO leaks out from the plastids of damaged potatoes. Potatoes that show black spot are typically trimmed, or oftentimes the entire potato is rejected before processing. This results in quality control challenges, economic loss, or both.

The PPO cassette in pSIM1278 targets the native *Ppo5* gene to downregulate gene expression via RNAi. Reducing the PPO concentrations in E12 tubers reduces the occurrence of black spot and therefore potato waste.

STUDY OBJECTIVES

Compare the PPO activity of E12 to its control, Russet Burbank, using a colorimetric assay that measures the conversion of a PPO substrate, catechol, into melanin.

STUDY DATES

Field trials for tuber generation for PPO analysis were conducted during the 2015 field season. Tubers were harvested and analyzed in September, 2015.

KEY PERSONNEL

MATERIALS AND METHODS

Field Trials

During the growing season of 2015, the event and its parental control were grown in Canyon County, Idaho. The field trial study report number is 15-03-SPS-EXP. The agronomic practices and pest control measures used were location-specific and were typical for all aspects of potato cultivation including soil preparation, fertilizer application, irrigation and pesticide-based control methods.

All seed was field-grown, with generation one (G1) seed for Russet Burbank control and generation two (G2) seed for E12. The generation of seed used is unlikely to impact trait efficacy since potatoes are clonally propagated. Plots were organized with events located adjacent to the appropriate parental controls. Each plot consisted of two rows, approximately 20 feet in length, planted with 20 seed pieces per row and approximately 8 and 12 inches between pieces.

PPO Activity Assay

Buffer Solution Preparation and Treatment. The assay involves a 15 minute incubation with one of two buffers: Buffer A (no substrate control) and Buffer B (containing catechol substrate). Buffer A is comprised of 0.1 M citric acid and 0.2 M Na₂HPO₄. Buffer B is comprised of 0.1 M citric acid, 0.2 M Na₂HPO₄, and 0.2% catechol.

Tuber Sample Preparation. A total of 10 tubers (1 tuber from each plant) was collected for the event and its respective control. Using disposable plastic scoops, two scoops from each tuber were transferred to a 1.7 mL Eppendorf tube. Six independent tubes were prepared: three treated with 1 mL of Buffer A and three with 1 mL of Buffer B. Photographs were taken at two time points: immediately following addition of buffers (T_0) and after 15 minutes of incubation (T_{15}).

Sample Scoring Protocol and Data Analysis. Ten tubers from both field grown E12 and Russet Burbank tubers were analyzed in triplicate. The color of the solution for each sample (T_0 and T_{15}) was compared to the gradient shown in the scoring scale depicted in Figure 1. Each tuber was given a score based upon the mean of the three technical replicates that were each scored by two independent personnel.

A mean score and standard deviation was calculated for each treatment (Buffer A or Buffer B) and sample (WT or E12) at each time point. A Student's t-test was used to assess statistical differences between WT and E12 after the 15 minute incubation (T_{15}).

Figure 1. PPO Activity Colorimetric Scoring Scale

A color scale was established that visually depicts the polyphenol oxidase (PPO) mediated conversion of a catechol substrate to melanin (colored). The extent of conversion can be visually assayed from little to no melanin (1-3), intermediate melanin (4-7), and extensive melanin formation (8-10).

Report 15-84-SPS-MOL

Page 7 of 9

RESULTS

Oxidation of diphenolic compounds catalyzed by polyphenol oxidase (PPO) results in formation of oquinones, leading to the formation of melanin (Albarran et al., 2010; Behbahani et al., 1993; Muneta, 1977). In this study, PPO activity was measured by monitoring the conversion of an exogenous diphenolic substrate, catechol, into melanin which is associated with a visible color change. An exogenous substrate was used to increase the rate and extent of color change in the samples.

Ten tubers from both field grown E12 and Russet Burbank tubers were analyzed using the PPO activity assay in triplicate. As shown in Figure 2A, there was no color change in either WT or E12 samples when treated with buffer lacking the PPO substrate, catechol. Addition of catechol resulted in a visible color change in the conventional control, Russet Burbank (WT), but not in E12 (Figure 2B).

Representative results from one conventional WT and E12 tuber exposed to either Buffer A or Buffer B. (A) No color change observed in WT and E12 after incubation in Buffer A (no catechol) for 15 minutes. (B) Dark color observed in WT, but not E12, after incubation in Buffer B (+ catechol) for 15 minutes. Color change indicates PPO activity.

The color change associated with each sample was scored using the PPO Activity Colorimetric Scoring Scale (Figure 1) with a summary of the results depicted in Figure 3. After 15 minutes, the color of E12 samples was similar to the T₀ time point, whereas significant color change occurred in the WT samples

after 15 minutes (Figure 3). The difference between the WT and E12 T_{15} samples was statistically significant (p<0.01). These results confirm a reduction of PPO activity in E12 tubers.

Figure 3. Reduced PPO Activity in E12 Compared with Control

PPO activity was scored using the PPO Activity Colorimetric Scoring Scale for each of the 10 biological samples. The mean and standard deviation (Std Dev) values are listed above (n=10). The data compares activity scores between E12 and WT Control at T0 and T15 in the presence of catechol. The average PPO activity score at 15 minutes catechol exposure is significantly lower in E12 when compared with the conventional control (* denotes p<0.01).

CONCLUSION

Trait efficacy associated with down regulation of *Ppo5* in E12 tubers was assessed in this study. Compared to the Russet Burbank conventional variety, PPO activity was significantly reduced in E12 tubers, consistent with effective downregulation of *Ppo5* in E12 potatoes.

REFERENCES

Albarran, G., Boggess, W., Rassolov, V., and Schuler, R.H. (2010). Absorption Spectrum, Mass Spectrometric Properties, and Electronic Structure of 1,2-Benzoquinone. The Journal of Physical Chemistry. A *114*, 7470–7478.

Behbahani, I., Miller, S., and Okeeffe, D. (1993). A Comparison of Mushroom Tyrosinase Dopaquinone and Dopachrome Assays Using Diode-Array Spectrophotometry: Dopachrome Formation vs Ascorbate-Linked Dopaquinone. Microchemical Journal *47*, 251–260.

Muneta, P. (1977). Enzymatic Blackening in Potatoes: Influence of pH on Dopachrome Oxidation. American Potato Journal.